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profile bacterial ARGs.

• More ARG subtypes were revealed by
metagenomics than high-throughput
qPCR.

• Similar ARGs dynamic patterns were re-
vealed by different ARG profiling ap-
proaches.

• High-throughput qPCR approach is suit-
able for routine environmental ARG
monitoring.

• Metagenomics is an ideal tool for more
comprehensive survey of environmen-
tal ARGs
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Bacterial antibiotic resistance genes (ARGs), a kind of emerging environmental pollutants, greatly threat human
health through pathogenic bacteria. High-throughput quantitative PCR (HT-qPCR) andmetagenomic approaches
are two popular tools applied in aquatic environmental ARGs monitoring. However, current poor knowledge of
different ARG profiling approaches' impacts on the understanding of the ARGs in aquatic environments greatly
limit the further field application of these two approaches. For filling such knowledge gap, this study simulta-
neously employed these two approaches to examine and compare the ARGs in a freshwater reservoir across
space and time. We found metagenomic approach detected more ARG subtypes and much higher bacitracin re-
sistance genes' abundances thanHT-qPCR. In general, HT-qPCR andmetagenomics analyses both revealed similar
ARG dynamic patterns and co-occurrence patterns between ARGs and bacterial taxa as well as the relationships
betweenARGs and environmental factors. Our results indicated the impacts of different ARGprofiling approaches
on the understanding of bacterial ARGs might be minor or negligible. HT-qPCR approach has the superiorities of
time-saving, absolute quantification, low requirement for bioinformatics skills but also has some drawbacks in-
cludinghigher PCR amplification & primer bias, higher primer dependency and relative lowerARG subtype quan-
tification capability compared to metagenomic approach. We suggest HT-qPCR approach can be employed for
routine aquatic environmental monitoring, and metagenomic approach could be applied in comprehensive
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surveys for gettingmore ARG subtype information. Our data can be a useful reference for choosing right ARGpro-
filing approaches for bacterial ARGs monitoring and risk assessment in aquatic environments.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Antibiotic resistance genes (ARGs) confer antibiotic resistance to
their hosts and lead to the failure of antibiotic therapy, the most effec-
tive measure to defeat pathogen infections in the last century (Baker
et al., 2017; Qiao et al., 2018). ARGs are natural and ubiquitous in the en-
vironment but their emergence, evolution and spread become faster
and faster since the first antibiotic, penicillin, was invented and widely
used in clinic, agriculture, cultivation industry and other fields
(Martínez, 2008; Allen et al., 2010; Knapp et al., 2010; Fortunato et al.,
2018). Nowadays, ARGs are regarded as “emerging environmental pol-
lutant” and environmental ARG pollutions have attracted great public
concerns for their high potential threat on human's health (WHO,
2018). Natural environments, especially for aquatic environments, are
important reservoirs of ARGs and play critical roles in the evolution,
spread and cross-species transfer of antibiotic resistance (Baquero
et al., 2008; Martínez, 2008; Allen et al., 2010; Marti et al., 2014).
ARGs in aquatic environments can enter human bodies through direct
pathways by drinking or touching and through indirect pathway by
aquatic product consuming, then ARGs are likely transferred to the bac-
teria hosted in humanbodies throughhorizontal gene transfer. Great ef-
fortsweremade on environmental ARGsmonitoring and risk evaluation
in aquatic environments including lakes (Liu et al., 2018; Yang et al.,
2018; Bondarczuk and Piotrowska-Seget, 2019; Yang et al., 2019), sea
(Yang et al., 2019; Calero-Cáceres and Balcázar, 2019), rivers
(Rodriguez-Mozaz et al., 2015; Zheng et al., 2018; Chen et al., 2019), res-
ervoirs (Guo et al., 2018; Chen et al., 2019), drinking water (Bai et al.,
2019; Ma et al., 2019) and the influents and effluents of water and sew-
age treatment plants (Yang et al., 2014; Li et al., 2015; Karkman et al.,
2018; An et al., 2018; Ju et al., 2019). Environmental ARGs are extremely
diverse and complex in natural waterbodies, and these properties in-
crease the difficulty of precise detection (Liu et al., 2018). Public calls
for reliable and standard ARG profiling approaches for monitoring and
evaluating the potential risks of environmental ARGs, especially the
ARGs in aquatic environments, to fill critical knowledge gaps related
to the environmental dimensions of antibiotic resistance (Allen et al.,
2010; McArthur and Tsang, 2017; Larsson et al., 2018).

For fulfilling such requirement, various ARGs profiling approaches,
including conventional quantitative PCR (qPCR), micro-array, high-
throughput quantitative PCR (HT-qPCR) and metagenomic sequencing
approaches, have been developed in recent decades (Su et al., 2017;
Waseemet al., 2019). Currently, HT-qPCR andmetagenomic approaches
are two powerful ARGs profiling approaches applied in environmental
ARG monitoring (Schmieder and Edwards, 2012; Waseem et al.,
2019). Compared with traditional ARGs profiling approaches, both HT-
qPCR and metagenomic approaches possess high-capacity of ARG pro-
filing that can provide much more ARG subtype information but
spend less time (Su et al., 2017; Waseem et al., 2019). HT-qPCR ap-
proach can simultaneously detect thousands of nano-liter qPCR reac-
tions per run with the help of high-throughput analysis platforms
(WaferGen SmartChip Real Time PCR System, Applied Biosystem Open
Array Platform, Bio-Rad CFX384TM Real-Time PCR Dectection System,
Microfluidic Dynamic ArrayTM System, etc.) (Waseem et al., 2019).
Metagenomic approach can employ shot-gunmetagenomic sequencing
to gain base sequences of DNA fragments (known as “reads”) from the
whole genome of target organisms or environmental samples and
then decode ARG profiles through the annotation of unassembled
reads or assembled sequences (“contigs” or “open-reading frame”) in
ARG databases, such as the antibiotic resistance genes database
(ARDB) (Liu and Pop, 2009), the comprehensive antibiotic resistance
database (CARD) (McArthur et al., 2013), and the structured ARG refer-
ence database (SARG) (Yang et al., 2016). Three studies simultaneously
used HT-qPCR and metagenomic approaches to profiling ARGs in the
microbiomes of swine intestine (Looft et al., 2012), murine gut
(Stedtfeld et al., 2017) and sludge (Tian et al., 2019), but they only sim-
ply compared the difference on detected types and abundances of ARGs
for the purpose of using metagenomics analyses to verify HT-qPCR re-
sults. Till now, no study was conducted typically focusing on exploring
the exact impacts of different ARG profiling approaches on the under-
standing of environmental ARG dynamics interpreted by common-
used downstream statistics analyses and systematically comparing the
applicability of HT-qPCR and metagenomic approaches in environmen-
tal ARG studies.

This study simultaneously employedHT-qPCR andmetagenomic ap-
proaches to profile ARGs of same water samples from a freshwater res-
ervoir under cyanobacteria bloom and non-bloom conditions. The
differences in the compositions and spatiotemporal dynamics of ARG
profiles as well as the effects of environmental variables on ARGs re-
spectively achieved byHT-qPCR andmetagenomics analyseswere iden-
tified. In this study, we aimed at (1) exploring the impacts of different
ARG profiling approaches on ARG profile-based downstream analysis
results and (2) providing valuable suggestions on the selection of ARG
profiling approaches applied in future environmental ARGsmonitoring.

2. Material and methods

2.1. Sample collection, measurements of environmental variables and DNA
extraction

Xidong Reservoir is a typical subtropical stratified freshwater reser-
voir located in Xiamen, China. Water samples were collected twice a
month from October to December 2014 at selected time (Guo et al.,
2018; Liu et al., 2019). Totally, 12 water samples were respectively col-
lected in 6 times of field-samplings from surface-layer (0.5 m) and
bottom-layer (25 m) of the water column of Xidong Reservoir. A
cyanobacterial bloom dominated by Microcystis aeruginosa was ob-
served in October, and the reservoir ecosystem recovered in November
(Xue et al., 2017; Guo et al., 2018). Detailed procedures of environmen-
tal variables measurements and DNA extraction were shown in supple-
mentary information (Methods S1 & S2).

2.2. Quantification 16S rRNA gene by real-time quantitative PCR

Real-time quantitative PCR was carried out for quantification of ab-
solute copy number of 16S rRNA genes by LightCycler® 480 System ac-
cording to a method reported in our previous study (Guo et al., 2018).
All samples were quantified in triplicate. For quality control, standard
curves as well as negative and positive controls were conducted follow-
ing the methods described in two previous studies (Schmittgen and
Livak, 2008; Ouyang et al., 2015).

2.3. Quantification of ARGs by HT-qPCR analysis

For quantification of ARGs, HT-qPCR was performed by a SmartChip
Real-time PCR system (Warfergen Biosystems, Fremont, CA, USA) ac-
cording to the protocol described by Su et al. (2015) and Liu et al.
(2018). One pair of 16S rRNA gene primer and 285 pairs of ARG primers
targeting 214 ARG subtypes were used for HT-qPCR analyses. Detailed
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primer information, protocol and data of HT-qPCR analysis aswell as ab-
solute ARG copy number calculationmethodwere described previously
(Liu et al., 2018).

2.4. Quantification of ARGs by metagenomics analysis

In this study, shotgun library was constructed by using NEBNext
Ultra DNA Library Prep Kit for Illumina (New England Biolabs, Ipswich,
MA, USA) according to the manufacturer's instruction. Briefly, DNA
was fragmented to a size of 300 bp by ultra-sonication, then DNA frag-
ments were, in turn, ligated with index barcode sequences, end-
polished, A-tailed, ligated with adaptor for Illumina sequencing and fi-
nally amplified by PCR. PCR products were purified with AMPure XP
system (Beckman Coulter, Beverly, MA, USA). Libraries were assessed
for size distribution by Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA, USA) and then quantified by real-time PCR.

The clustering of the index-barcoded samples was carried out on a
cBot Cluster Generation System (Illumina Inc., San Diego, CA, USA) fol-
lowing the manufacturer's instructions. After cluster generation, the li-
brary preparations were sequenced on an Illumina HiSeq2500
platform (Illumina Inc., San Diego, CA, USA) using a paired-end (2
× 150 bp) sequencing strategy. A total of 129,514.62 Mbp reads
(10,792.89Mbp reads per sample in average) for 12 sequenced samples
were achieved. All metagenomic sequence data had been uploaded in
the public NCBI sequence read archive (SRA) database under the
BioProject number PRJNA416667.

To guarantee the accuracy and reliability of metagenomic sequenc-
ing data, data filtration of raw reads was performed to get the clean
reads by removing adaptor-contaminated (≥ 15 bp sequence overlap
with adapter sequence), ambiguous (≥ 10 ambiguous nucleotides) and
low-quality reads (≥ 40 nucleotides with quality score below 38).
After data filtration, 129,117.47 Mbp clean reads (about 10 Gb of clean
reads data per sample in average) were achieved for further ARG anno-
tation in SARG database following ARGs-OAP (online analysis pipeline)
with default settings (Yang et al., 2016). In this study, 7.17 × 107 pairs of
reads with 150 bp length per sample were achieved in average. Com-
paredwith the sequencing depth in similar study (Li et al., 2015), the se-
quencingdepth of our 12 sampleswas sufficient to characterize theARG
profile at subtype level.

2.5. Statistical analyses

In order to compare ARGs abundance quantified by HT-qPCR and
metagenomic approaches, normalization of ARG absolute abundance
data was carried out. In HT-qPCR data-based downstream analysis, the
normalized abundance of ARG was defined as the ratio of absolute
ARG abundance of all bacteria to absolute 16S rRNA gene abundance
of all bacteria (the ARGs copy number /16S rRNA gene copy number).
For metagenomics data-based downstream analyses, the normalization
of metagenomics data was automatically conducted by SARG database
using ARG-OAP online pipeline (Yang et al., 2016). Briefly, the normal-
ized abundance of the ARG type or subtype was calculated based on
the ARG read abundance (ppm: reads per one million reads) acquired
via metagenomic sequencing following the method built by Li et al.
(2015).

The bacterial taxonomic communities were profiled by Illumina se-
quencing and the detailed information was described in supplementary
information (Method S3). The bacterial OTU sequence data of all bacte-
ria were calculated by normalizing to the ratio of the least DNA se-
quence concentration (copy/L) of all samples to those of selected
sample. Finally, the percentages of bacterial OTU sequence numbers
were used for network analysis.

ARG abundance and richness data were visualized in column charts
using Origin v8.0 software (Origin Lab, Northampton, MA, USA). Box
charts and scatter plotswere performed in SigmaPlot v12.0 (Systat Soft-
ware Inc., Chicago, IL, USA). Shannon-Wiener index computation,
nonmetric multi-dimensional scaling (NMDS) ordination, Bray-Curtis
dissimilarity computation and analysis of similarities (ANOSIM) of
ARG profiles were performed in the PRIMER v7.0 (Clarke and Gorley,
2015). For the comparison of more than two independent groups, the
Kruskal-Wallis test was performed in SPSS v22.0 (IBM Corp., Armonk,
NY, USA).

Redundancy analysis (RDA) was performed in CANOCO program
v4.5 (Microcomputer Power, Ithaca, NY, USA) (ter Braak and Šmilauer,
2002). The absolute copy numbers of ARGs measured by HT-qPCR, the
ARG read abundance quantified by metagenomic approach and log (x
+ 1)-transformed data of environmental variables, except pH, were
used for RDA analysis. In order to exclude the influence of collinearity
among environmental variables on RDA analysis results, we sequen-
tially removed environmental variables with the highest variance infla-
tion factor, until all variance inflation factors were b10. Then, a forward
selection procedure with 999 Monte Carlo permutation tests was con-
ducted to identify the environmental variables significantly (P b 0.05)
correlated with the profile of ARGs.

For exploring temporal pattern of ARG composition dynamics, time-
lag analysis was conducted according to our previous study (Guo et al.,
2018). The neutral communitymodel (NCM)was employed to evaluate
the effects of stochastic processes on ARG profile using the method de-
scribed previously (Sloan et al., 2006; Guo et al., 2018). All related com-
putations and visualizations were performed in R software v3.4.3 (R
Core Team, 2017).

The Spearman's rank correlation-based network analysis was
employed to explore co-occurrence pattern betweenARGs and bacterial
taxa using the “picante” package in R software (Kembel et al., 2010; Li
et al., 2015; R Core Team, 2017). The normalized bacterial sequence
number by Illumina sequencing, the percentages of the absolute copy
numbers of ARGs measured by HT-qPCR and the percentages of the
ARG read abundances quantified by metagenomic approach were
used for network analyses. Finally, networks were visualized by Gephi
software v0.9.2 (available at: https://gephi.org/).

3. Results and discussion

3.1. The impacts of different ARG profiling approaches on ARG compositions

In total, 104 and 160 ARG subtypes conferring resistance to 10 and
18 classes of antibiotics were detected in all samples by HT-qPCR and
metagenomics analyses, respectively (Fig. 1A). Higher total normalized
abundances of all ARGs were revealed by metagenomics analysis than
by HT-qPCR analysis (Fig. 1B). Further, we found great differences in
bacitracin resistance genes abundances (HT-qPCR vs. metagenomics:
0–2.23 × 10−5 vs. 1.30–3.05 × 10−2) which resulted in different domi-
nant ARGs identified by HT-qPCR (multidrug resistance genes) and
metagenomics (bacitracin and multidrug resistance genes) analyses
(Fig. 1B, C). Lower normalized abundances and richness of ARGs in
HT-qPCR results (Fig. 1) demonstrated the metagenomic approach
might provide more comprehensive information of aquatic environ-
mental ARGs than HT-qPCR approach, and three reasons may explain
the differences observed in such comparison.

The first reason is limited availability of ARG primers for HT-qPCR
analysis. Current-used ARG primers were mainly designed based on
part of representative ARG sequences archived in ARGs databases
(Looft et al., 2012; Ouyang et al., 2015; Zhu et al., 2017), while
metagenomic approaches which identify ARGs by aligning all environ-
mental microorganism sequences to all ARGs-like sequences in ARGs
databases without the limit on primers could certainly detect more
ARGs and report higher abundances and richness of ARGs. In pace
with increasing works on ARG primer design, booming primers
targeting environmental ARGs will be available for HT-qPCR analysis
(i.e. Looft et al., 2012; Zhu et al., 2013; Ouyang et al., 2015; Stedtfeld
et al., 2018), so that more comprehensive and reliable information of
environmental ARGs can be provided by HT-qPCR analysis as time

https://gephi.org/


Fig. 1.Comparison of theARGprofiles achievedbyHT-qPCRandmetagenomics analyses. (A) The richness of ARGs based on detectednumber of ARG subtypes; (B)Normalized abundances
of ARGs; (C) The relative abundances of ARGs calculated based onnormalized ARG abundance. ARGswere classified into twenty types according to antibiotics classes they confer resistance
to. “S” and “B” represents surfacewater samples (0.5mdepth) and bottomwater samples (25.0mdepth), respectively. “Bloom” and “Non-bloom”means thewater sampleswere collected
in cyanobacterial bloom period (days 297 and day 304 of the year 2014) or in non-bloom period (day 325, 332, 346 and 363 of the year), respectively. MLS: macrolide, lincosamide and
streptogramin; Others: the ARGs conferring resistance to other classes of antibiotics including nitroimidazole, lantibiotic and pyrazinamide; Unclassified: the ARGs with no clear
classification in the structured ARG reference database.
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goes on. However, the increase of ARGs-like sequences in ARGs data-
base would be faster than the increase of new-validated ARG primers
for HT-qPCR analysis due to current wide application of DNA sequenc-
ing technologies in environmental investigation which can provide
thousands of new ARGs-like sequences in just one investigation.
Hence, metagenomic approaches would be likely to provide more com-
prehensive ARG information than HT-qPCR for a long time to come.

The second reason is the PCR amplification bias in HT-qPCR analysis.
InHT-qPCR analysis, different ARGprimers requiring different optimum
PCR conditions for amplifications of ARGs were simultaneously reacted
in one platform with same PCR condition. The primers of some ARGs
might not work in their optimum PCR conditions in this study, thus
the detected abundances of those ARGsmight be lower than their actual
values in environment. Amplification bias might also be existed but
could be relative fewer in metagenomics analysis due to the mecha-
nisms of metagenomic sequencing (Schmieder and Edwards, 2012; Li
et al., 2015). For such reason, metagenomic approaches were often
employed for verifying the ARG results of HT-qPCR analysis in previous
studies (Looft et al., 2012; Stedtfeld et al., 2017; Tian et al., 2019).

The third reason is the use of inadequate ARG primers. In this study,
the primers for bacitracin resistance genes amplification were designed
only for targeting bacA genes in Escherichia coli whose abundance was
very low in studied reservoir (Liu et al., 2019), while bacitracin resis-
tance genes were distributed in a wide range of bacteria taxa
(Stedtfeld et al., 2017; Yang et al., 2019).

No significant difference was observed in richness and Shannon-
Wiener index of ARGs between HT-qPCR andmetagenomic approaches
(Fig. S1). The richness and Shannon-Wiener index of ARGs in Xidong
Reservoir were comparable to those of ARGs in sediment, ocean and
drinking water but were obviously lower than those of ARGs in sewage
treatment plant and livestock (Fig. S1). Recently, Yang (2019) also re-
ported Shannon-Wiener indexes of lake and sea water were
comparable.

3.2. The impacts of different ARG profiling approaches on interpreting the
effects of environmental variables on ARG profiles

As Venn diagram (Guo et al., 2018; Zhao et al., 2018), NMDS (Li et al.,
2015; An et al., 2018; Guo et al., 2018) and RDA analysis (Yang et al.,
2014; Chen et al., 2016; McCann et al., 2019; Yang et al., 2019) were
common-used tools for exploring the relationships between environ-
mental variables and ARG profiles, we compared the results of these



Fig. 2. Similar effects of cyanobacterial bloom on bacterial ARGs in the water of Xidong
Reservoir were respectively revealed by HT-qPCR and metagenomics analyses. Venn
diagrams show ARG subtype number in cyanobacteria bloom and non-bloom periods
achieved by HT-qPCR (A) and metagenomics analyses (B), respectively. The numbers
without and in brackets in Venn diagrams represent the amount and the percentages of
unique or shared ARG subtypes in cyanobacteria bloom period and in non-bloom
period, respectively. Nonmetric multi-dimensional scaling (NMDS) ordinations show the
similarity of ARG profiles between different water stratifications (surface-layer and
bottom-layer) and between different cyanobacterial bloom periods (bloom period and
non-bloom period) achieved by HT-qPCR (C) and metagenomics analyses (D),
respectively. In NMDS ordinations, a circle or square symbol in green or blue colour
represents the ARGs in a surface-layer or bottom-layer water sample during
cyanobacteria bloom period or non-bloom period, respectively. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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three analyses based on ARG profiles quantified by HT-qPCR and
metagenomic approaches to evaluate the impact of different ARGprofil-
ing approaches on understanding the relationships between environ-
mental variables and ARGs (Figs. 2 and 3).

The ARGs of different cyanobacterial bloom periods (cyanobacteria
bloom period and non-bloom period) profiled by HT-qPCR and
metagenomic approaches were showed in Venn diagrams (Fig. 2A and
B). The percentages of shared ARG subtypes measured by HT-qPCR
(56.73%) and metagenomics (56.25%) analyses were almost identical
(Fig. 2A and B). NMDS analysis results based on ARGs data from differ-
ent ARG profiling approaches (Fig. 2C and D; Table 1) both showed sig-
nificant difference (P b 0.01) between the ARGprofiles in cyanobacterial
bloom period and in non-bloom period and no significant difference (P
N 0.05) between the ARG profiles in surface water and in bottomwater,
indicating we could achieve similar interpretations on the effects of
cyanobacterial bloom on ARG profiles, no matter HT-qPCR or
metagenomic approach was used for profiling aquatic bacterial ARGs
in the studied reservoir. More importantly, RDA analyses based on HT-
qPCR andmetagenomics data both identified that pHwas the only envi-
ronmental variable significantly correlated with the ARGs (P b 0.01,
Fig. 3), thereby revealing that the selection of different ARG profiling ap-
proaches might have little impact on interpreting the relationships be-
tween ARGs and environmental variables. Slight difference in variance
of ARGs explained by RDA axes (Fig. 3) was observed and may be due
to the differences in the ARG abundances quantified by different ARG
profiling approaches. The similar conclusions drawn by Venn diagram,
NMDS and RDA analyses (Figs. 2 and 3) indicated the impacts of differ-
ent ARG profiling approaches (HT-qPCR andmetagenomic approaches)
on interpreting environmental variables' effects on ARG profile in our
studied reservoir may be negligible.

3.3. The impacts of different ARG profiling approaches on identifying co-
occurrence patterns between ARGs and bacterial taxa

Network analysis has been widely used in exploring co-occurrence
patterns between ARGs and bacterial taxa, and can successfully reflect
the potential ARGs-bacteria relationships and identify possible host of
ARGs (Li et al., 2015; Liu et al., 2018) which is important for risk evalu-
ation of antibiotic resistance spread (Berendonk et al., 2015). The co-
occurrence networks between bacterial taxa at family level and ARGs
quantified by HT-qPCR and metagenomics analyses were compared
and were shown in Fig. S2 and Fig. S3. Detailed topological properties
of networks are presented in Table S1.

The majority of network nodes representing ARGs or bacterial taxa
based on HT-qPCR data (Fig. S2A) were belonged to four ARG types in-
cluding beta-lactam, MLS (macrolide, lincosamide and streptogramin),
multidrug, and tetracycline and four bacterial phyla including
Proteobacteria, Actinobacteria, Chloroflexi and Firmicutes. Such result is
similar to the result based on metagenomics data that most of nodes
representing ARGs and bacterial taxa were belonged to four ARG types
(animoglycoside, beta-lactam, fosmidomycin and multidrug resistance
genes) and four bacterial phyla (Proteobacteria, Actinobacteria,
Chloroflexi and Firmicutes) (Fig. S2B). No or only one strong correlation
between cyanobacteria and bacitracin or multidrug resistance genes
was respectively observed in HT-qPCR and metagenomics analyses
(Fig. S2). Apart from the number of nodes and edges, other topological
properties of ARG-bacterial taxa correlation networks on the basis of
HT-qPCR and metagenomics data were also similar to some extent
(Table S1).

As shown in Fig. S3 and Table S1, our network analysis results based
on HT-qPCR and metagenomics data both showed remarkable differ-
ences between the ARGs-bacterial taxa networks in cyanobacterial
bloom period with higher modularity (0.873 and 0.907, respectively)
and the networks in non-bloom period with slightly lower modularity
(0.856 and 0.785, respectively), suggesting cyanobacterial bloom
might change the ARGs-bacterial taxa co-occurrence patterns in the
studied freshwater reservoir.

The similar complicated ARGs-bacteria taxa co-occurrence patterns
observed in the networks based on HT-qPCR and metagenomics data
(Fig. S2 and S3) revealed that the influences of different ARG profiling
approaches on the general understanding of ARGs-bacterial taxa co-
occurrence patterns might be little or negligible despite that some
minor difference may be existed in detected ARG subtype numbers
and abundances.

3.4. The impacts of different ARG profiling approaches on deciphering the
spatiotemporal dynamic patterns of ARGs

Time-lag analysis was firstly used for determining the rates and pat-
terns of variability in ecological communities (Collins et al., 2000) and
then was modified for exploring the temporal dynamic pattern of ARG
profiles (Guo et al., 2018). According to the linear regression of all
data points and P-value, the temporal stability of the component of
ARGs can be evaluated (Guo et al., 2018). The neutral community
model (NCM) is also a powerful tool for evaluating the relative role of
stochastic processes in explaining bacterial taxonomic and functional
(i.e. ARGs) profiles assembly (Sloan et al., 2006; Guo et al., 2018). In
order to evaluate the impacts of different ARG profiling approaches on
exploring the spatiotemporal dynamic patterns of ARGs, time-lag anal-
ysis andNCMwere conducted on the basis of ARGoccurrence quantified



Fig. 3. Same environmental variable significantly correlated with ARGs was respectively identified by the redundancy analyses based on HT-qPCR and metagenomics data. Only the
environmental variable significantly (P b 0.01) correlated with the ARG profiles was presented in redundancy analysis (RDA) plots. Green or blue circle symbols represent the ARGs in
the water collected during cyanobacterial bloom period or non-bloom period, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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by HT-qPCR and metagenomic approaches in this study and the results
were compared (Fig. 4).

Time-lag analysis results based on ARGs data from HT-qPCR and
metagenomics analyses were similar because the dissimilarity of ARGs
composition significantly (P b 0.05) increased over time, both suggest-
ing that cyanobacteria bloom maybe enhanced the homogeneity of an-
tibiotic resistomes in the reservoir (Fig. 4A and B). The medium and
large fraction of the compositional variation in the ARGs which can be
explained by the NCM. The fitting results of NCM were similar that the
ARG profiles achieved by HT-qPCR and metagenomics analyses were
well fit (R2 = 0.52 for HT-qPCR data, R2 = 0.91 for metagenomics
data) to the NCM (Fig. 4C and D), revealing the stochastic processes
maybe greatly shape the dynamics of ARG profiles in the reservoir.
The highly similar conclusion respectively drawn by time-lag analysis
and NCM based on HT-qPCR and metagenomics data indicated that
the impacts of different ARG profiling approaches on the understanding
of the spatiotemporal dynamic patterns of ARGs might be slight or
negligible.
3.5. Comparison of the advantages and disadvantages of HT-qPCR and
metagenomic approaches

For figuring out which approach will be more suitable for environ-
mental ARGsmonitoring, the costs of time andmoney for ARG profiling
by HT-qPCR and metagenomic approaches were compared (Table 2).
Table 1
Analysis of similarity showing same effects of cyanobacterial bloom or water depth (sur-
face and bottom) on ARG profiles based on different ARG profiling approaches.

ARG profiling approach Group Global R P

HT-qPCR Bloom vs. non-bloom periods 0.825 0.002⁎⁎

Surface vs. bottom −0.065 0.639
Metagenomics Bloom vs. non-bloom periods 0.717 0.002⁎⁎

Surface vs. bottom 0.043 0.255

The analysis of similarity statistic compares the mean of ranked dissimilarities between
groups to themean of ranked dissimilaritieswithin groups. Global R value close to “1” sug-
gests dissimilarity between groups while global R value near “0” suggests an even distri-
bution of high and low ranks within and between groups. Global R value below “0”
indicates that dissimilarities are greater within groups than between groups.
⁎⁎ P b 0.01.
As triplicate should be at least carried out in ARG quantification for
proving data reliability, one Wafergen SmartChip containing 5184
nano-wells allows for up to ARGs detection of five environmental sam-
ples per run if 296 primer sets (containing 285 ARG primers in this
study) are used (Guo et al., 2018). According to our practical experience,
current cost of HT-qPCR analysis encompassing the costs of relevant re-
agents (i.e. LightCycler 480 SYBR Green I Master mix), consumable ma-
terials (i.e. Wafergen SmartChip) and instrument rental is
approximately $500 for ARG profiling of five samples. So, the cost of
HT-qPCR-based ARG profilingwas calculated to be about $100 per sam-
ple in the condition that the number of sample amount is amultiple of 5
(Table 2). In our research team, experienced researchers who are famil-
iar with HT-qPCR analysis procedures can complete three times of HT-
qPCR analysis and profile the ARGs of 15 environmental samples in
one day. As people usually work 5 days in one week, we estimated
that an experienced researcher has the capability of profiling the ARGs
of 75 samples per week (Table 2).

The costs of money and time formetagenomics-based ARGs analysis
were estimated based on DNA library construction, metagenomic se-
quencing and data cleaning in this study. As ARGs are normally in low
abundance in most of natural environments compared with other
genes (i.e. 16S rRNA genes), N10 Gb high-quality metagenomic se-
quencing data (about 7 × 107 pairs of sequencing reads with 150 bp
length) would be suitable in order to prove sufficient sequencing
depth (Li et al., 2015). Currently, the total price of the services including
library construction, metagenomic sequencing and data cleaning is
about $200 per sample with N10 Gb sequencing data. The cost of ARGs
annotation on SARG database is negligible because this ARG database
is now free for everyone (Yang et al., 2016). Hence, we finally estimated
the total cost of metagenomics-based ARG profiling of one sample is
about $200 (Table 2). Ideally, main procedures of metagenomic ARG
profiling includes DNA library construction, metagenomic sequencing,
data cleaning and ARGs annotation which may respectively cost about
1, 3, 1 and 2 days for one batch ofmetagenomics analysis of 12 environ-
mental samples for maximizing the utilization rate of lanes in sequenc-
ing platform. In the actual situation, more time is likely to be spent on
those procedures for many unpredictable conditions.

Obviously, less time andmoney are required for obtaining ARG pro-
files of same samples by HT-qPCR than by metagenomics analysis now-
adays (Table 2). The cost of time and money of HT-qPCR and
metagenomic sequencingwill decrease in pacewith the advances in re-
lated technologies. Actually, data from National Human Genome



Fig. 4. Comparison of temporal compositional dynamics (A, B) and neutral community model fitness (C, D) of the ARG profiles in all samples revealed by HT-qPCR (A, C) and by
metagenomics (B, D) analyses, respectively. Temporal compositional dynamics of all ARGs were analyzed based on time-lag regression analyses using ARG data. Data for testing
neutral community model fit was the absolute ARG abundances achieved by HT-qPCR analysis and the normalized ARG read number achieved by metagenomics analyses. Solid blue
line represents the predicated occurrence frequency; dashed blue lines represent 95% confidence intervals around the model prediction. ARGs that occur more or less frequently than
predicted by neutral community model are shown in different colors. Nm means community size (N) times immigration (m), and R2 indicates the fit to neutral community model.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Research Institute (NHGRI) Genome Sequencing Program showed the
cost of sequencing had continuously sharp decreases in recent decade
(Schmieder and Edwards, 2012; Wetterstrand, 2018).

Although HT-qPCR approaches have the advantages including quick
(less cost of time per sample) and cheap (less cost of money per sam-
ple), they are still highly limited in the capability of providing compre-
hensive ARG information because of their high dependency on ARG
primers. Current available ARG primers are very limited (285 ARG
primer pairs for 214 ARG subtypes in this study). Hence, HT-qPCR
Table 2
Comparison of the advantages and disadvantages of the application of HT-qPCR and
metagenomic approaches employed in this study on aquatic environmental ARG
monitoring.

HT-qPCR Metagenomics

ARG abundance
quantification

Absolute quantitative Semi-quantitative

ARG subtype quantification Less (214 ARG subtypes) More (1209 ARG
subtypes)

Detection cost Low ($100 per sample) High ($200 per sample)
Detection speed Fast (75 samples per

week)
Slow (12 sample per
week)

PCR amplification & primer
bias

High Low

Primer dependency High Low
Bioinformatics skill
requirement

Low High
approaches could only provide the information of hundreds of ARG sub-
types, while metagenomic approaches using SARG database could pro-
vide information about 1209 ARG subtypes (Yang et al., 2016).
However, metagenomic approaches require researchers should have
good skills and professional experience in bioinformatics analyses
which may limit the application of such approaches in environmental
ARG survey. Even more and more bioinformatics analysis pipelines or
softwares have been improved or developed (McArthur and Tsang,
2017), it is still a hardwork for most of researchers who are not experts
in bioinformatics to capture ARG information from environmental
metagenomes containing millions of, even billions of, bacterial nucleo-
tide sequences.

Routine environmental monitoring puts forward relative high de-
mands on detection speed, cost of money and operation simplicity but
a relative low demand in comprehensiveness of ARG information, be-
cause routine environmental monitoring would be made in high fre-
quency and focus on some specific or typical ARGs posing high threats
to human health, such as tetracycline and carbapenems resistance
genes (Berendonk et al., 2015). HT-qPCR approach well meets such re-
quirements andwould be suitable for routine environmental ARGmon-
itoring. More importantly, HT-qPCR approach can achieve absolute
quantification of ARGs at subtype level, while metagenomic approach
is only a semi-quantitative method for ARGs quantification. More com-
prehensive and systematic surveys of environmental ARGs require tools
which can providemost comprehensive information of ARGs in investi-
gated environments but do not have high demands in detection speed,
cost of money and operation simplicity because such surveys would not
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be high-frequently conducted (i.e. Zhu et al., 2017), just like census. So,
metagenomic approach can be one of good choices for such general and
comprehensive surveys of environmental ARGs.

4. Conclusion

Similar interpretations on the effects of environmental variables on
ARG profiles and the spatiotemporal dynamic patterns of ARGs were
achieved by HT-qPCR and metagenomics analyses, although more
ARGs subtypes were detected by the metagenomic approach. The im-
pacts of different ARG profiling approaches on the understanding of
bacterial ARGs in aquatic environment could be minor or negligible.
Our study can guide researchers in selecting an ideal environmental
ARG profiling approach for different monitoring purposes. However,
with the developments of qPCR, sequencing, bioinformatics and other
technologies, HT-qPCR and metagenomic approaches may overcome
their current weaknesses and have higher application potentials in
monitoring and risk evaluation of environmental ARGs.
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