
Water Research 201 (2021) 117380

Available online 21 June 2021
0043-1354/© 2021 Elsevier Ltd. All rights reserved.

Revisiting seasonal dynamics of total nitrogen in reservoirs with a 
systematic framework for mining data from existing publications 

Zhaofeng Guo a,b, Wiebke J. Boeing c, Yaoyang Xu a,d,*, Changzhou Yan a, Maede Faghihinia a,d, 
Dong Liu a,b 

a Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 
361021, China 
b University of Chinese Academy of Sciences, Beijing 100049, China 
c Department of Fish, Wildlife & Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA 
d Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of 
Sciences, Ningbo 315830, China   

A R T I C L E  I N F O   

Keywords: 
Reservoir 
Total nitrogen 
Seasonal dynamics 
Data mining 

A B S T R A C T   

Investigation of seasonal variations of water quality parameters is essential for understanding the mechanisms of 
structural changes in aquatic ecosystems and their pollution control. Despite the ongoing rise in scientific pro-
duction on spatiotemporal distribution characteristics of water quality parameters, such as total nitrogen (TN) in 
reservoirs, attempts to use published data and incorporate them into a large-scale comparison and trends ana-
lyses are lacking. Here, we propose a framework of Data extraction, Data grouping and Statistical analysis (DDS) 
and illustrate application of this DDS framework with the example of TN in reservoirs. Among 1722 publications 
related to TN in reservoirs, 58 TN time-series data from 19 reservoirs met the analysis requirements and were 
extracted using the DDS framework. We performed statistical analysis on these time-series data using Dynamic 
Time Warping (DTW) combined with agglomerative hierarchical clustering as well as Generalized Additive 
Models for Location, Scale, and Shape (GAMLSS). Three patterns of seasonal TN dynamics were identified. In 
Pattern V-Sum, TN concentrations change in a "V" shape, dropping to its lowest value in summer; in Pattern P- 
Sum, TN increases in late summer/early fall before decreasing again; and in Pattern P-Spr, TN peaks in spring. 
Identified patterns were driven by phytoplankton growth and precipitation (Pattern V-Sum), nitrate wet depo-
sition and agricultural runoff (Pattern P-Sum), and anthropogenic discharges (Pattern P-Spr). Application of the 
DDS framework has identified a key bottleneck in assessing the dynamics of TN — low data accessibility and 
availability. Providing an easily accessible data sharing platform and increasing the accessibility and availability 
of raw data for research will facilitate improvements and expand the applicability of the DDS framework. 
Identification of additional spatiotemporal patterns of water quality parameters can provide new insights for 
more comprehensive pollution control and management of aquatic ecosystems.   

1. Introduction 

Reservoirs are artificial freshwater ecosystems built to meet basic 
water needs for human activities. Purposes of reservoirs include water 
security to support fundamental human requirements such as drinking 
water, food, energy as well as human health and general well-being. 
Although water surface area of reservoirs accounts for only 6% of the 
global lentic waters, they trap 33% of the total nitrogen (TN) removed 
from terrestrial ecosystems by lentic systems (nitrogen burial and 

denitrification) (Harrison et al., 2009) and serve as important nitrogen 
storage sites. In reservoir ecosystems, nitrogen plays a key role in sus-
taining primary production and biogeochemical cycles, and its cellular 
demand is higher than that of nutrients such as phosphorus and iron 
(Andersen et al., 2020; Hecky and Kilham, 1988). Nevertheless, negative 
impacts of excessive nitrogen due to anthropogenic, exogenous, and 
endogenous loadings (e.g., agricultural fertilization, soil erosion, at-
mospheric deposition, and decompositions of plants and algae) on 
reservoir ecosystems and human health (Galloway et al., 2004) have 
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been well documented. For instance, surplus nutrient loading can lead to 
non-nitrogen-fixing cyanobacteria becoming superior competitors 
(Huisman et al., 2018), and resulting cyanobacterial blooms not only 
deteriorate water quality but also release algal toxins that harm 
ecological health (Gaget et al., 2017). Water quality problems in reser-
voirs caused by eutrophication and harmful algal blooms have been of 
great concern and present a global challenge (Huang et al., 2020). Un-
derstanding patterns of seasonal TN dynamics in reservoirs is often a 
prerequisite for reversing current water quality problems and managing 
reservoir ecosystems. 

Over the past decades, researchers have focused on how to alleviate 
the above-mentioned negative effects caused by reservoir excess nitro-
gen and sustainably maintain reservoir ecosystem services. Examples 
include investigating trophic state and seasonal changes in South Korean 
reservoirs (Jones et al., 2003), assessing reservoir trophic status and 
impact on phytoplankton (Xu et al., 2010) and examining spatiotem-
poral distribution variability of nutrients during a wet and dry year 
(Williamson et al., 2020). These studies used different data processing 
and statistical methods to investigate distribution characteristics of 
water quality parameters at local scales and paradigms cannot be 
generalized and applied to other reservoirs. To our knowledge, no 
studies have attempted to analyze reservoir TN dynamics on a global 
scale and incorporated environmental factors such as climate and hy-
drology. This is partly due to weak optical activity of reservoir TN, 
which has spatiotemporal variation and the limited ability to monitor 
and predict its dynamics by satellite remote sensing (Vakili and Ama-
nollahi, 2020). Fortunately, availability of TN monitoring data for water 
quality in existing publications offers the potential to meet large-scale 
trend studies in TN dynamics. 

How to mine existing data from the literature and analyze them 
scientifically and statistically is key to study dynamics of water quality 
parameters. Most studies that focus on dynamics of environmental pa-
rameters over time have collected multi-scale datasets with spatiotem-
poral variability. Thus, selection of appropriate grouping and fitting 
methods is beneficial for the interpretation of time-series data and 
pattern recognition (Li et al., 2021). Time-series clustering methods are 
powerful tools for analyzing patterns of seasonal dynamics and identi-
fying overall spatiotemporal characteristics of parameters. Among many 
time-series similarities measures, Dynamic Time Warping (DTW) 
currently consists of the most widely applied and effective algorithms 
and is most effective at finding the best alignment and measuring dis-
tances (Dupas et al., 2016; Lottig et al., 2017; Wang et al., 2020). Un-
doubtedly, it is feasible to use DTW to measure distances and differences 
between time-series data. Furthermore, Generalized Additive Models for 
Location, Scale and Shape (GAMLSS) was used to fit the seasonal dy-
namics. This model is widely employed in hydrological time-series 
modeling as a flexible statistical modeling approach (Li and Tan, 
2015; López and Francés, 2013; Su and Chen, 2019). 

Here, we proposed a framework of Data extraction, Data grouping 
and Statistical analysis (DDS framework) aimed at assessing dynamic 
variations of water quality parameters. Taking TN in reservoirs as an 
example, the framework is applied to extract and statistically analyze 
literature data to explore the following research questions: (1) How can 
time-series data be most efficiently collected from the existing litera-
ture? (2) What are the patterns of TN seasonal dynamics in reservoirs? 
(3) What are the causes of TN dynamics? Application of the DDS 
framework for TN dynamic exploration contributes to the eutrophica-
tion control and management of reservoir ecosystems. Meanwhile, key 
issues in the data mining and dynamic exploration of water quality 
parameters with TN as an example were demonstrated, and the signif-
icance of current data sharing and improving the accessibility and 
availability of raw data to promote pollution management in aquatic 
ecosystems is emphasized. 

2. Methods 

The DDS framework shown in Fig. 1 demonstrates whole process of 
extracting, grouping and statistically analyzing the time-series data, 
taking reservoir TN as an example. First, retrieved literatures are 
screened and time-series data are extracted. Then, obtained time-series 
data are sorted and grouped. Finally, time-series clustering and fitting 
are performed on the data sets that met analytical requirements to 
obtain TN patterns. Combined with other environmental factors, the 
causes of seasonal variations of TN were identified. 

2.1. Data extraction 

First, a search was performed in Web of Science Core Collection for 
literature published from 1990 to 2020 using the terms “reservoir” AND 
“nutrient” AND “nitrogen” in the Web of Science ‘Topic’ search (Fig. 1a). 
The scope of ‘Topic’ search includes the title, abstract, and keywords list 
of the publication. A total of 1722 documents were retrieved. Among the 
retrieved documents, 1351 were available for download as PDF files. 
Then, we reviewed the full texts of these 1351 documents and found 909 
that contained surface water data from the reservoirs. Further manual 
screening identified 113 documents containing TN dynamics data, and 
the remaining documents that did not provide TN data or only measured 
other forms of nitrogen data were excluded. These data were presented 
in 21 tables and 97 figures within the 113 documents. We obtained those 
data either directly from tables or using the GetData Graph Digitizer 
software (V2.26; http://www.getdata-graph-digitizer.com/) from fig-
ures. Some studies performed multi-point or stratified sampling, i.e., 
multiple time series could be obtained in these studies. Thus, a total of 
172 time-series were obtained. 

2.2. Data grouping 

The 172 extracted time-series data were classified into ‘annual’, 
‘seasonal’, ‘monthly’, ‘weekly’, and ‘daily’ sampling frequencies 
(Fig. 1b). Analyses of TN concentrations on a quarterly or annual 
monitoring frequency mask seasonal dynamics of reservoir ecosystem 
structure and other environmental factors (Kong et al., 2019), and these 
data were not considered. Daily- and weekly-scale data were excluded 
from this study due to absence of 12-period monitoring or missing data 
or the fact that data were averaged. Moreover, ‘monthly’ time scale 
accounted for more than 68% (117) of TN time-series, and thus, we 
focused our analyses on those data. 

TN data were then classified as to whether they were based on 
averaged or non-averaged data. We discarded the 35 time-series that 
only provided averaged monthly data. The remaining 82 data that 
provided non-averaged data were subdivided into three categories based 
on the duration of their monitoring. Time-series with a monitoring 
duration shorter than 12 months (24 time-series) were excluded from 
this study as they did not provide a complete annual picture of TN dy-
namics. To facilitate analyses of monthly time-series of different dura-
tions, this study cut data series that had monitoring data between 12 and 
24 months (37 time-series) to a consistent 12-month time span. Time- 
series that exceeded 24 months were split into 21 sub-series with 12 
months duration each. The 58 time-series were further classified ac-
cording to their spatial data collecting protocol: single-point, multipoint, 
layered, and multipoint layered (sampling of various water depths) 
sampling. 

Overall, we analyzed 58 time-series from 19 different reservoirs 
(Table S1). We retrieved a single time-series from eleven reservoirs. For 
eight reservoirs we were able to extract between 2 to 12 time-series data. 
Data sets that stemmed from the same reservoir were either collected at 
different times, locations, or water depths. Processing of the above time 
series is based on our assumption that TN dynamics from the same 
reservoir may also vary depending on sampling time, location, and 
water depths (See Section 3.2 for a detailed discussion). Usage of 
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averaged data could have made the true trends of TN patterns invisible 
during our analyses. 

2.3. Statistical analysis 

The time-series data were standardized to a mean of 0 and a standard 
deviation of 1 before analyses (Fig. 1c). An agglomerative hierarchical 
cluster was performed to group TN time-series using Ward’s minimum 
variance algorithm with Dynamic Time Warping (DTW). DTW algorithm 
was used to measure distances between clusters with the smallest sum of 
squared deviations and is calculated based on the minimum distance of 
all possible alignments (Sakoe and Chiba, 1978). We used the "dtw" 
package in the R software for time-series cluster analysis. 

Once clusters were identified, Generalized Additive Model for 
Location, Scale and Shape (GAMLSS) with cubic spline regression was 
applied to fit patterns of TN seasonal dynamics of all time-series in each 
cluster. As a semiparametric or parametric regression model, GAMLSS 
relaxes the assumptions about the type of distribution of the response 

variables and can describe any linear or non-linear relationship between 
the variables (Rigby and Stasinopoulos, 2005). Best-fitting distribution 
was selected based on values of the Akaike Information Criterion (AIC) 
during GAMLSS fitting. The “gamlss” package in the R software was used 
to run GAMLSS models. 

To investigate the causes of TN dynamics, we also collected data on 
basic information, water quality indicators, climatic parameters, runoff 
depth, and Normalized Difference Vegetation Index (NDVI) from the 
literature and related data-sharing platforms (Table S1; Parameter data). 
Among them, the following data were collected from the literature 
containing TN dynamic data: sampling dates, latitude and longitude of 
sampling sites, monthly concentrations data of total phosphorus, nitrate- 
N, ammonia-N, and chlorophyll-a (Chl-a). The extraction and pre- 
processing method of water quality parameters data are consistent 
with that of TN time series data. Not all literature contains the above 
data, but at least sampling dates information is required. Precipitation, 
air temperature, mixing depth, water temperature, and runoff depth 
were obtained from the Climate Data Store. NDVI data were downloaded 

Fig. 1. Data extraction, Data grouping and Statistical analysis framework (DDS framework). The red "X" mark indicates that the data was excluded. (a) Data 
extraction; WOS – Web of Science; TS – Topic Search; R – Reservoir; N – Nitrogen; PY – Publication Year; (b) Data grouping. Sampling frequency: annual (TY), 
seasonal (TS), monthly (TM), weekly (TW), and daily (TD). Spatial sampling distribution: single-point (Tsp), multipoint (Tmp), layered (TL), layered and multipoint 
(TL&m); (c) Statistical analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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from the NASA Earth Observation website. To reduce the uncertainty of 
analysis, data obtained from the database were selected for periods 
corresponding to the TN sampling dates. The specific sources and in-
formation of each parameter were detailed in Table S1 (Parameter in-
formation). Spearman correlation analyses were performed on monthly 
datasets of climatic parameters, water quality indicators, runoff depths, 
and NDVI. We used the "openair" package in the R software to run 
correlation analysis. 

3. Results 

3.1. Geographical coverage of total nitrogen (TN) time-series dataset 

The 58 monthly TN time-series data used for analyses originated 
from 19 reservoirs on five continents (Fig. 2), with broad geographical 
coverage but were located mainly in Asia (10 reservoirs) and Europe (5 
reservoirs). The remaining time-series were extracted from Belle Mina 
Reservoir and Lake Waco Reservoir (USA), Pao-Cachinche Reservoir 
(Venezuela) and Yaacoub Al Mansour Reservoir (Morocco). Detailed 
information on the location of the reservoirs can be found in Supple-
mentary Materials (Table S1; Reservoir information). 

3.2. Spatiotemporal characterization of TN dynamics 

TN time-series data were divided into three clusters (Fig. 3). Twenty- 
two TN time-series from nine reservoirs on five continents formed 
Cluster 1. TN concentrations in this cluster ranged from 0.03 to 9.12 mg 
L− 1, with an average of 1.44 ± 1.31 mg L− 1. The coefficient of variation 
reached 90.62% and the degree of data dispersion was high. The 
average, upper and lower quartiles, and the peak of probability density 
function distribution for Cluster 1 were all lower than for Cluster 2 and 
3. The 16 TN timer-series in Cluster 2 were from eight reservoirs on four 
continents, with TN ranging from 0.37 to 5.42 mg L− 1 and an average of 
1.92 ± 1.01 mg L− 1. The coefficient of variation was 52.61% and the 
degree of data dispersion was relatively small. For Cluster 3, the 20 TN 
time-series came from nine reservoirs on four continents. TN concen-
trations in this cluster ranged from 0.20 to 13.76 mg L− 1 with an average 

of 2.59 ± 2.16 mg L− 1 and a coefficient of variation of 83.33%. In 
contrast, the average and upper quartile values for Cluster 3 were higher 
than those for Cluster 2. 

TN time-series from multiple sampling sites within an individual 
reservoir were not all spatially similar in their TN dynamics, and TN sub- 
time-series from same sampling sites over multiple years were not all 
temporally similar. For example, while the six time-series data collected 
from different sampling locations of Three Gorge Reservoir all fell into 
Cluster 2, the data from five different sampling locations from Qing-
caosha Reservoir were separated into Clusters 1 and 2. And the four 
time-series data stemming from different water surface sampling sites of 
Pao-Cachinche Reservoir ended up in Clusters 2 and 3. Similarly, data 
sets from different water layers / depths could cluster together (Pao- 
Cachinche Reservoir) or separate (Shingu Reservoir, Simajigawa 
Reservoir) and data sets retrieved from the same reservoir but during 
different years could end up in the same (Baihua Reservoir; Lake Gle-
bokie Reservoir; Simajihawa Reservoir, surface layer) or different clus-
ters (Belle Mina Reservoir; Simajihawa Reservoir, middle and bottom 
layers). 

Three patterns of seasonal TN dynamics were identified by fitting the 
time-series in each cluster using the cubic spline function of the GAMLSS 
model. Pattern ‘Summer Valley’ (V-Sum) fit a Power Exponential, 
Pattern ‘Summer Peak’ (P-Sum) an ex-Gaussian, and Pattern ‘Spring 
Peak’ (P-Spr) a Skew Normal Type 2 distribution. Filliben correlation 
coefficients were greater than 0.98 for all models and the quality of fit 
met analytical requirements in all cases. The lowest TN concentration 
for Pattern V-Sum is reached during the summer resulting in a "V" shape 
(Fig. 4a). In Pattern P-Sum, TN concentration increased in spring, 
peaked in summer, and then decreased again reaching its lowest values 
during the winter months (Fig. 4b). In Pattern P-Spr, TN increased early 
in the year and reached a peak in spring and decreased during the 
summer and fall (Fig. 4c). 

3.3. Correlation between TN and other environmental factors 

To investigate the causes of TN seasonal dynamics, Spearman cor-
relations between climate parameters, water quality indicators, monthly 

Fig. 2. The geographic location of the 19 reservoirs where total nitrogen (TN) was monitored for more than 12 months: 3 in Americas; 6 in Europe/North 
Africa; and 10 in Asia. The value after the reservoir name is the number of time-series. 
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Fig. 3. Total nitrogen (TN) time-series clus-
tering and its distribution of concentration 
characteristics for each cluster. Cluster anal-
ysis diagrams were obtained with Dynamic 
Time Warping (DTW) Agglomerative Hierar-
chical Clustering Algorithm (top). Boxplots are 
based on monthly TN time-series (bottom); 
boxes represent interquartile ranges of 25 and 
75%, horizontal lines in boxes show medians, 
black dots are means, and whiskers represent 
1.5 times the interquartile range (IQR). The x- 
axis shows the data and corresponds to “Sample 
Code” in Table S1. Split violin plots show the 
distribution of TN concentration for each clus-
ter; dashed lines correspond to the lower and 
upper quartiles and black solid line lines 
represent the mean; the outer shape is the 
kernel density estimate (the density of data 
distribution).   

Fig. 4. Centiles plots of the total nitrogen (TN) monthly dynamics based on Generalized Additive Models for Location, Scale, and Shape (GAMLSS) (a, b, 
and c) and their corresponding pattern diagrams (d, e and f). The line is the regression estimation curve for the 90%quantile(p < 0.01). 
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runoff depths, and Normalized Difference Vegetation Index (NDVI) were 
analyzed. In Pattern V-Sum, there were significant and strong positive 
correlations between TN and TP as well as TN and nitrate-N (r = 0.59 
and 0.75, respectively, p < 0.01) and negative correlations between TN 
and precipitation, TN and NDVI, as well as TN and mixing depth (r =
-0.21, -0.27, and -0.43, respectively, p < 0.01) (Fig. 5a). In Pattern P- 
Sum, there were weak positive correlations between TN and TP (r =
0.25), TN and monthly runoff depth (r = 0.21), and a negative corre-
lation between TN and mixing depth (r = -0.45) (Fig. 5b). In Pattern P- 
Spr, TN was correlated with nitrate-N (r = 0.78), TP (r = 0.64), and Chl-a 

(r = 0.52) (p < 0.01 in all cases) (Fig. 5c). Like the two previous patterns, 
mixing depth was again negatively correlated with TN (r = -0.88) in 
Pattern P-Spr. Additionally, all three patterns showed strong negative 
correlations between TP and TN/TP mass ration (r = -0.74, r = -0.88, 
and r = -0.78, respectively; p < 0.01 in all cases). In all three patterns, 
the three parameters, TN and air temperature as well as water temper-
ature, clustered in the same cluster but did not show significant 
correlations. 

4. Discussions 

4.1. Pattern V-Sum and its potential causes 

Phytoplankton communities play an important role in TN dynamics 
in Pattern V-Sum (Fig. 4d). The negative correlation between TN and 
NDVI further confirmed that phytoplankton growth likely influenced TN 
concentration. During the growth period, phytoplankton take up more 
nutrients thus reducing their concentration and resulting in the lowest 
TN concentrations during the summer (Yang et al., 2020). Nitrate-N 
concentrations showed similar trends to TN (Fig. S1b) and were nega-
tively correlated with water temperature. This could be the result of 
increased water temperature, reduced reservoir load and enhanced 
phytoplankton uptake and denitrification during summer months 
(Wang, 2020). Phytoplankton accelerates the deposition of nutrients 
and prevents their resuspension of nutrients from the sediment, 
contributing to stabilization of the water column and further reducing 
nutrient concentrations (Qi et al., 2019). The low-temperature winter 
conditions in the reservoir inhibit aquatic biological activity and lead to 
low oxygen consumption, which decreases the absorption, adsorption, 
and deposition of nutrients. As a result, TN content was higher in both 
fall and winter compared to summer. 

TN dynamics of Pattern V-Sum were also related to monthly pre-
cipitation. Precipitation patterns are the potential factor in changing the 
dynamics of water quality parameters (Atique and An, 2020). The 
negative correlation between TN and monthly precipitation indicates 
that precipitation affected seasonal variations in TN. 
Summer-dominated precipitation (especially in June) caused a signifi-
cant decrease in TN concentrations due to dilution effects (Fig. S1i). 
Furthermore, large amounts of runoff that converge after heavy pre-
cipitation promote reservoir mixing, increase dissolved oxygen levels in 
the water-body and inhibit release of nutrients from the sediment, 
resulting in lower algal biomass in the reservoir (Li et al., 2015). Chl-a 
concentrations and Chl-a/TN ratios showed a decreasing trend in sum-
mer, and we speculate that dilution effect of TN and algae caused by 
heavy precipitation was stronger during this period. TP dynamics in 
spring and summer were synchronous with TN and there was a moderate 
negative correlation between TP and precipitation. This is consistent 
with the hypothesis that precipitations have a diluting impact on nu-
trients (Dupas et al., 2018). 

TN/TP, Chl-a/TN, and Chl-a/TP ratios are often used as indicators of 
potential nutrient limitation in reservoirs (Spears et al., 2013). 
Compared to the other two patterns, Chl-a/TP ratios were relatively high 
in Pattern V-Sum and more than 60% of TN/TP ratios were greater than 
22.6, indicating phosphorus acts as a potentially limiting factor 
(Mamun et al., 2020; Qin et al., 2020). Chl-a/TN ratios increased and 
then decreased in the first half of the year, probably due to dilution of TN 
resulting in transient nitrogen limitation of algae. The time-series sam-
ples in Pattern V-Sum were mainly from drinking water reservoirs, such 
as Qingcaosha Reservoir and Shimajigawa Reservoir, where the nutrient 
loads mainly stemmed from natural origin (Chen and Zhu, 2018; 
Komatsu et al., 2006). In short, TN dynamics in Pattern V-Sum were 
primarily influenced by phytoplankton activity and precipitation and 
were subject to relatively little human perturbation and had a more 
healthy / natural catchment area. 

Fig. 5. Correlation matrix heatmap. Correlations between parameters are 
shown by shape/tilt, and value. An oval shape with a tilt represents the positive 
or negative correlation. Correlation coefficients of -1 and 1 correspond to a tilt 
of 135◦ and 45◦, respectively. R = 0 corresponds to a circle. The value (number 
inside the shape) shows the percentage of the correlation coefficient (r*100). 
Hierarchical clustering is applied to the correlation matrices to group similar 
parameters (right of figure). AT – air temperature; Chl-a – chlorophyll-a; MD – 
mixing depth; NDVI – Normalized Difference Vegetation Index; NH4-N – 
ammonia-nitrogen; NO3-N – nitrate-nitrogen; PP – total precipitation; RD 
–monthly runoff depth (the sum of surface runoff and sub-surface runoff); TN – 
total nitrogen; TP – total phosphorus; WT – water temperature. 

Z. Guo et al.                                                                                                                                                                                                                                     



Water Research 201 (2021) 117380

7

4.2. Pattern P-Sum and its potential causes 

Nitrate wet deposition and agricultural runoff were the factors that 
dominated TN dynamics in Pattern P-Sum (Fig. 4e). A comparison of 
nitrate-N concentrations with corresponding precipitation distribution 
showed a relationship between nitrate-N and precipitation peaking at 
the same time in summer (June) (Fig. S1b and i). Nitrate wet deposition 
may be the cause of increased nitrogen load in summer because atmo-
spheric nitrogen may have been transformed to nitrate-N by nitrification 
and reached reservoir areas in the form of precipitation (Hao et al., 
2017). However, TN was not strongly correlated with nitrate and 
ammonia-N and its concentration did not increase to its peak until late 
summer. This may have been caused by surface runoff accumulating 
after the precipitation period and carrying large amounts of 
nutrient-rich pollutants into the water (Wang et al., 2018). This hy-
pothesis is supported by the positive correlation between TN and 
monthly runoff depth (the sum of surface runoff and sub-surface runoff). 

Precipitation-induced soil erosion can cause an increase in TP and TN 
loads of water (Leigh et al., 2010). But while TP and runoff depth were 
negatively correlated, neither one exhibited a strong correlation with 
TN. This indicates that TN was not primarily derived from soil erosion. 
Additionally, nitrate-N is closely related to leaching of agricultural ni-
trogen fertilizers (Ferrier et al., 2001). Following heavy precipitation 
events in summer, nitrate-N concentrations in Pattern P-Sum were 
higher than those in the other two patterns and the high proportion of 
nitrate-N compared to ammonia-N. This probably demonstrates that 
agricultural runoff has a greater influence on TN dynamics compared to 
urban inputs (Al-Taani, 2011). Chl-a and TN reached the highest values 
during the same season, indicating that stored nutrients and warmer 
temperatures tend to trigger algal blooms in the summer. A decreasing 
trend in TN concentrations began in the fall, which was associated with a 
decrease in agricultural runoff. 

4.3. Pattern P-Spr and its potential causes 

TN dynamics in Pattern P-Spr were mainly attributed to anthropo-
genic discharges (Fig. 4f). A majority of time-series samples for this 
pattern were taken from Pao-Cachinche Reservoir and Glebokie Lake, 
which receive untreated wastewaters from human and animal, resulting 
in eutrophic-hypertrophic state (Gonzalez et al., 2004; Miller et al., 
2016). TN/TP ratios of Pattern P-Spr were relatively low compared to 
the other patterns (Fig. S1g). Reservoirs that are more subjected to 
agricultural and urban runoff tended to have lower TN/TP ratios 
compared to reservoirs that are exposed to fewer human disturbances 
(Mamun et al., 2020). In the TN composition, the average proportion of 
inorganic nitrogen reached more than 57% and the proportion of 
nitrate-N and ammonia-N was equal, which may be attributed to sewage 
discharge (Grabb et al., 2021; Vilmin et al., 2018b). Positive correlations 
between TN and nitrate-N (r = 0.78) as well as TN and ammonia-N (r =
0.23) further indicated that anthropogenic activities, such as agricul-
tural, industrial, and domestic sewage, were the main sources of nitro-
gen contamination (Guo et al., 2020). 

Agricultural wastewater discharges are most likely to contribute to 
TN dynamics in Pattern P-Spr. Activities such as tillage and irrigation are 
particularly frequent in spring. This is accompanied by the discharge of 
agricultural wastewater rich in nutrients, resulting in abnormally high 
levels of TN during this period (Zhang et al., 2020). As crops are har-
vested and agricultural activities decrease, TN concentrations decrease. 
Most of the time-series samples in this pattern were located at shallower 
depth locations, such as those at Globokie Lake and Marcali Reservoir, 
where the water depth was less than 2.5 m (Matyas et al., 2003; Miller 
et al., 2016). Thus, external anthropogenic disturbances had a greater 
impact on their water chemistry. Pattern P-Spr exhibited higher levels of 
Chl-a and TN concentrations compared to the other two patterns 
(Fig. S1f). This is attributed to the fact that reservoirs located in agri-
cultural and urban areas receive relatively more nutrients (Atique and 

An, 2020). In Pattern P-Spr, the increased spring temperature in spring 
has potential to stimulate phytoplankton growth, i.e., excessive nutrient 
accumulation is likely to trigger algal blooms in spring (Liang et al., 
2020). Chl-a increased substantially in spring, probably because excess 
nutrient storage tended to trigger algal blooms during that time. Most of 
the TN, especially in Patterns P-Sum and P-Spr were greater than 1 mg 
L− 1, demonstrating that most reservoirs are nitrogen-rich waters. The 
correlation between Chl-a and TP was stronger compared to Chl-a and 
TN. This suggests that TP had more influence on changes of aquatic 
biomass in nitrogen-rich waters, which is consistent with the results of 
other lakes and reservoirs studies (Søndergaard et al., 2017; Wang, 
2020). 

4.4. Challenge of pattern analysis and significance of data availability 
and sharing 

We identified TN dynamics in reservoirs, but due to limited data, 
there may still be other patterns that were not detected. In this study, we 
did not use the TN data from two ice-covered reservoirs. On one hand, 
because of a small amount of data and inconsistency of the ice-cover 
period between reservoirs (He et al., 2011; Shourian et al., 2016), 
comparative analyses could not be carried out and general conclusion 
could not be drawn. On the other hand, full ice cover has an impact on 
both the structure and function of aquatic ecosystem (McMeans et al., 
2020), and reservoir TN dynamics may show another completely novel 
pattern. With the growing number of publication data, the DDS frame-
work can be further improved and applied to separate studies of TN 
dynamics for ice-covered reservoirs in future work. By further 
improving the DDS framework, a separate discussion of TN dynamics for 
ice-covered reservoirs should be conducted in future. 

Results of data extraction and grouping from reservoirs demon-
strated the low accessibility and availability of raw data for a large 
number of studies. In some of the literature where data were accessible, 
sampling details including geographic location, number of sampling 
sites and distance from the dam were not indicated in the text, reducing 
data availability. In response to this shortcoming, scholars in the field of 
hydrology have developed survey tools for self-assessment of data 
availability and reproducibility to aid authors in evaluating their man-
uscripts and improve data accessibility before publication (Stagge et al., 
2019), which are worth replicating in other fields. 

Inappropriate processing of raw data reduces results credibility and 
data availability. TN variability in reservoirs is subject to a combination 
of regional hydrologic disturbances and internal regulatory mecha-
nisms, and even TN dynamics in the same reservoir often exhibit asyn-
chronous patterns across sampling location, depths, and interannual. 
For example, the Pao-Cachinche Reservoir (Venezuela), mentioned 
above, is used for drinking water supply and agricultural irrigation but 
can have untreated municipal and farming wastewater sinks in its 
watershed (Gonzalez et al., 2004). This large reservoir has different 
seasonal dynamics of nitrogen patterns at different sampling sites. 
Within a reservoir ecosystem, its physical, chemical, and biological 
factors interact and exhibit multi-dimensional variability (Xu et al., 
2012), thus driving spatiotemporal heterogeneity of water quality pa-
rameters. This also means that the average value of multiple/stratified 
sampling points or multi-year may not necessarily represent trends of 
nutrient dynamics. Nearly 30% of monthly TN time-series were aver-
aged without considering spatiotemporal differences, smoothing and 
masking out variability on spatiotemporal scales. Thus, we decided not 
to utilize those data which was also a cause of the low data availability of 
TN time-series. This also demonstrates the necessity to understand how 
various parameters fluctuate synchronously or asynchronously on a 
spatiotemporal scale before determining monitoring protocols and data 
processing methods for long-term observations of aquatic ecosystem 
dynamics (Vilmin et al., 2018a). 

Data sharing and extensive data accumulation at spatiotemporal 
scales are key to future explorations of patterns of seasonal dynamics of 
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environmental parameters in reservoir ecosystems on a global scale. 
Some popular study areas (e.g., Three Gorges Reservoir) were monitored 
by different institutions over the same time period. However, due to the 
lack of collaborations, cooperation, and sharing mechanisms, moni-
toring data and results were not well integrated and explored. Im-
provements in data sharing would allow us to assess potential water 
quality problems from a global perspective. At the regional level, many 
studies have been conducted on TN in reservoirs, with the highest foci in 
North America, Europe, and Asia. This reflects the capacity for large- 
scale studies in these regions and offers the possibility to create global 
datasets with broad geographic coverage. However, TN time-series 
extracted from South America and Africa are still limited. Indeed, our 
ability to accurately assess the dynamics of global reservoir TN relies on 
the accumulation of a range of spatiotemporal scale observations. 
Integrating spatiotemporal data into a framework and applying them in 
analyses of seasonal dynamics in reservoir ecosystems will provide new 
insights into the mechanisms that dynamics of environmental parame-
ters in reservoirs in general. 

5. Conclusion and future suggestions 

In this study, a data extraction, data grouping and statistical analysis 
framework (DDS framework) was proposed for identifying seasonal 
dynamics of water quality parameters. Workflow of DDS framework was 
illustrated with the example of total nitrogen (TN) in reservoirs. With a 
total of 1722 publications, our employment of this framework produced 
58 time-series data of TN from 19 reservoirs, indicating that accessibility 
and availability of monthly data for TN provided in the publications 
were not high. Among the three patterns of TN seasonal dynamics 
identified, TN concentrations in Pattern V-Sum showed a decreasing and 
then increasing trend over the year with a minimum value occurring in 
early summer. Phytoplankton growth and precipitation were the main 
causes of this pattern. In Pattern P-Sum, TN was mainly influenced by 
nitrate wet deposition and agricultural runoff, which tends to first in-
crease during the year and then decrease, reaching a peak in later 
summer. In Pattern P-Spr, the peak in TN concentrations occurred in 
spring, with a decreasing trend after early summer and was mainly 
caused by anthropogenic discharges. Understanding the TN seasonal 
dynamics in reservoirs will help in reservoir water quality pollution 
control and management. 

The underlying mechanisms of TN patterns and their causes are still 
at a high level of uncertainty. Low data accessibility and availability 
constrain further exploration of TN dynamics in reservoirs. Dynamics of 
water quality parameters in reservoir ecosystems are often influenced by 
complex biotic and abiotic interactions. This means that most patterns of 
seasonal dynamics cannot be characterized by linear models. TN dy-
namics may be influenced by multiple and uncertain sources, especially 
in large reservoirs, where the diversity of pollution sources allows for 
spatiotemporal heterogeneity in nitrogen dynamics. However, data gaps 
in some water quality parameters limit the interpretation of TN dy-
namics. For example, Chl-a and air temperature, as indicators affecting 
ecological status of water quality as well water temperature and runoff 
in reservoir ecosystems respectively, did not show the expected corre-
lations with TN in Patterns V-Sum and P-Sum. This indicates that TN has 
a complex relationship with these parameters and is also controlled by 
other environmental factors not considered. 

Application of this DDS framework identifies primary issues to be 
addressed in spatiotemporal dynamic studies of water quality parame-
ters, i.e., emphasizing the significance of data sharing and the necessity 
to improve accessibility and availability of raw data. Sharing raw data 
through easily accessible platforms can increase the efficiency of reusing 
published data and facilitate deeper information mining. Because of 
spatiotemporal heterogeneity of dynamic variations in water quality 
parameters, data processing without considering characteristics of 
parameter variations will also affect the availability of accessible data. 
Therefore, data sharing needs to take into account principles of 

accessibility and reusability. The proposed DDS framework can be 
extended to other aquatic ecosystems to identify more parameter dy-
namics while providing guidance for more comprehensive ecosystem 
pollution control and management. 
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