Noble metal free, CeO$_2$/LaMnO$_3$ hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light

Juan-Juan Lia,b, En-Qi Yua,b,c, Song-Cai Caia,b,c, Xi Chena,b,c, Jing Chena,d, Hong-Peng Jiaa,b,c,*, Yi-Jun Xua,f,**.

a CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
b Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
c University of Chinese Academy of Sciences, Beijing, 100049, PR China
d Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China
e State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, PR China
f College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, PR China

** ARTICLE INFO **

** Keywords:**
CeO$_2$/LaMnO$_3$, IR light, Photo-thermocatalysis, VOCs, Mars-van Krevelen

** ABSTRACT **

Large amounts of anthropogenic VOCs emissions give rise to photochemical smog and ground-level ozone. Currently, catalytic oxidation for VOCs elimination still requires energy-intensive high temperatures. Light-driven photo-thermocatalysis oxidation of VOCs holds great promise to substantially reduce energy consumption for sustainable development in comparison with conventional thermal-based catalytic oxidation. Herein, CeO$_2$/LaMnO$_3$ composite, featuring the broad light wavelength absorption (800 ~ 1800 nm), can be used as a highly active photo-thermal responsive catalyst on VOCs decomposition under IR irradiation. The maximum photo-thermal conversion efficiency is able to reach 15.2% with a significant toluene conversion of 89% and CO$_2$ yield of 87% under IR irradiation intensity of 280 mW/cm2, together with excellent stability of nearly 30 h. Comparative characterizations reveal that such photo-thermal catalytic activity enhancement is predominantly attributed to the synergistic effects of ultrabroadband strong light absorption, efficient light-to-heat conversion, good low temperature reducibility and high lattice oxygen mobility, originating from an intense interaction of LaMnO$_3$ with CeO$_2$. Toluene oxidation reaction on GeO$_2$/LaMnO$_3$ catalyst proceeds via a Mars-van Krevelen mechanism as evidenced by in situ diffuse reflectance infrared Fourier transform spectroscopy.

1. Introduction

Volatile organic compounds (VOCs), generated from numerous anthropogenic activities (i.e. vehicular and industrial emissions from fossil fuel combustion) and additional natural sources (i.e. biogenic terrestrial ecosystems, biomass burning and plant decay) [1], are increasingly emitted into the atmosphere. A variety of aromatic VOCs with high toxicity or carcinogenicity, mutagenic and teratogenic features, are harmful to human health and behave as the precursor of photochemical smog, tropospheric ozone and secondary aerosols, ultimately making major contributors to air pollution [2]. Consequently, numerous researchers have invested continuously growing interest for VOCs elimination by either physical deposition (e.g., absorption, condensation and membrane separation) or catalytic oxidation to CO$_2$ (e.g., thermal catalytic oxidation, photocatalysis and plasma catalysis). In particular, catalytic oxidation is generally considered as the most efficient way to entirely decompose the wide range of organic pollutants into harmless products (CO$_2$ and H$_2$O). Supported noble metals, single or mixed transition metal oxides have been developed for the oxidation of VOCs. Notably, noble metal catalysts show prominent catalytic activity, but tend to have high cost, low thermal stability, easy sintering and poisoning characters.

Perovskite oxides, an important class of mixed oxide, have received considerable attention, because they offer potential advantages in high catalytic activity, low cost, strong thermal stability and perfect anti-poisoning ability [3]. Previously, lanthanum manganese-based perovskites have been found to exhibit excellent catalytic performance for VOCs oxidation compared to other transition metal-based perovskites.
For example, Levasseur et al. [5] prepared a series of LaBO₃ (B = Co, Mn, and Fe) catalysts by adopting reactive grinding approach and observed their different activities for methanol oxidation following the sequence LaMnO₃ > LaCoO₃ > LaFeO₃, which was ascribed to easy reducibility and high availability of surface oxygen of LaMnO₃. Álvarez-Galván and co-workers [6] studied catalytic combustion of methyl ethyl ketone over LaBO₃ (B = Cr, Co, Ni and Mn), and the order of catalytic activity is LaMnO₃ > LaCoO₃ > LaNiO₃ > LaCrO₃, being comparable with that of more expensive supported Pt catalysts. In addition, Al₂O₃/LaMnO₃, TiO₂/LaMnO₃ and CeO₂/LaMnO₃ have also been reported for thermal-based catalytic oxidation of VOCs [7].

In contrast to thermal catalytic oxidation of VOCs as mentioned above, solar energy represents a non-polluting, renewable and economical energy source [8]. Converting solar light into chemical energy via photocatalysis to generate highly reactive oxidative species (ROSs, e.g., holes or superoxide/hydroxyl radicals) can be used as an effective strategy for photocatalytic degradation of VOCs [9-11]. The long wavelength infrared (IR) light constitutes 53% of the solar energy reaching earth’s surface [12], and it is highly desirable to develop IR-light-responsive photocatalysts for degradation of VOCs. Recently, we found that the hybrid Pt-rGO-TiO₂ [13], featuring the broad light wavelength absorption, can be used as a highly active photo-thermal responsive catalyst for efficient VOCs decomposition under IR irradiation, which suggests that IR-driven photo-thermocatalysis opens the alternative possibility of light-driven photo-thermal catalytic oxidation for environmental pollutants elimination.

In general, the wide light absorption capability covering the IR spectrum range, forceful coupling of the harvested photons into thermal energy and highly efficient thermocatalytic activity are fundamental prerequisites for an ideal photo-thermal material to achieve high solar energy conversion efficiency. It has been shown that LaMnO₃ perovskite is characteristic of well-defined IR-absorption capability, deriving from free Jahn-Teller hole polarons and Jahn-Teller hole polarons within localized charge transfer vibronic excitons (Mn⁺−Mn²⁺ pairs) [14-16]. Up to now, the major focus of interests in LaMnO₃-based composites have been on thermocatalysis and UV−vis light driven photocatalysis, rather than IR-light driven catalysis. For example, Li and co-workers [17] have investigated lanthanum-based perovskites LaBO₃ (B = Cr, Mn, Fe, Co and Ni) for photo-thermocatalytic oxidation of gaseous styrene under visible light illumination and found that styrene oxidation activities follow the order of LaMnO₃ > LaCoO₃ > LaNiO₃ > LaCrO₃. However, to date, there has been no report on utilizing a LaMnO₃-based material for IR-driven photo-thermal catalytic reactions.

Herein, we report that the non-noble metal CeO₂/LaMnO₃ nanomaterial as a novel IR light absorber for efficient degradation of VOCs through photo-thermal effect. In particular, the CeO₂/LaMnO₃ composite exhibits high catalytic activity with 89% of toluene conversion and 87% of CO₂ yield under IR irradiation intensity of 280 mW/cm², along with excellent stability of nearly 30 h. The comparative characterization reveals that such photo-thermal catalytic activity enhancement benefits from the synergistic effects of strong light absorption, efficient light-to-heat conversion, increased low temperature reducibility and accelerated lattice oxygen mobility. Our current work strongly suggests that there is also a wide promising scope to explore the IR light driven LaMnO₃-based composites in heterogeneous photo-thermal catalysis. It is anticipated that this work would enable the extensive development of photo-thermal responsive perovskites for solar energy conversion.

2. Experimental section
2.1. Catalyst preparation

CeO₂/LaMnO₃ was synthesized via citric acid combustion method. First, stoichiometric amounts of La(NO₃)₃·6H₂O, Mn(NO₃)₂ (50 wt% aqueous solution) and Ce(NO₃)₂·6H₂O were dissolved in 200 ml of deionized water. Then, citric acid was added into the above solution with a molar ratio of 1:3 to the total amount of metal cations. Subsequently, the solution was heated under vigorous stirring on a hot plate until self-combustion occurred. Finally, CeO₂/LaMnO₃ catalysts were obtained by calcination at 400 °C for 2 h and then at 800 °C for 4 h.

For comparison, the preparation procedure of LaMnO₃ and CeO₂ were similar to that of CeO₂/LaMnO₃ without addition of CeO₂ or LaMnO₃ precursor, respectively.

2.2. Catalyst characterisation

Powder X-ray diffraction (XRD) characterization was carried out on a X’Pert Pro automatic powder diffractometer operated at 40 kV and 40 mA using Cu Kα monochromatized radiation. Nitrogen adsorption-desorption measurements of the catalysts were performed on a Quantachrome autosorb iQ2 adsorption automatic instrument at liquid nitrogen temperature. All samples were degassed under vacuum at 250 °C for 10 h before the measurement. The specific surface area and pore volume of the catalysts were calculated from the nitrogen adsorption-desorption isotherms using the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The optical properties of the samples were characterized by UV−vis diffuse reflectance spectroscopy (DRS) using UV−vis spectrophotometer (UV 3600, Shimadzu) at room temperature using BaSO₄ as a reference. XPS analysis was conducted on a Thermo Escalab 250 with a monochromatised microfocused Al X-ray source. Scanning electron microscopy (SEM) images of the samples were obtained on an S−4800 scanning electron microscopy. Transmission electron microscopy (TEM) was analyzed using a JEOL model JEM 2100 EX instrument at an acceleration voltage of 200 kV. The enthalpy of the sample was obtained by using differential scanning calorimeter (Netzsch STA 449 F3, Thermal Analysis Corporation, Germany) from 30 to 400 °C at a heating rate of 5 °C/min in an air flow of 50 ml/min. O₂-Temperature-programmed desorption (TPD) measurement was performed on a Quantachrome Chemstar instrument. 200 mg sample was filled in an adsorption vessel and pretreated in a He flow (50 ml/min) at 300 °C for 60 min then cooled to 35 °C and kept at this temperature for 60 min in a flow of 5 vol % O₂/He. Then, the sample was swept with He for 60 min and heated to 900 °C at a rate of 10 °C/min in a He flow of 30 ml/min. The desorbed oxygen was monitored by thermal conductivity detector. In situ DRIFTS was performed on a FTIR spectrometer (Thermo Fisher Nicolet is 50) equipped with a smart collector and a MCT/A detector.

2.3. Photo-thermocatalytic activity

The photo-thermocatalytic activity of the samples for toluene oxidation was evaluated in a cylindrical stainless steel reactor with a quartz window under IR light irradiation (375 W, Philips) with a 800 nm cut-off filter. In the experiments, an ethanol suspension containing 0.1 g of the catalyst was prepared, and then coated on a fiberglass membrane of 50 mm diameter, dried at 80 °C and finally placed on the photoreactor. Prior to irradiation, the adsorption-desorption equilibrium of toluene on the photocatalyst was conducted. The simulated air stream (21% O₂/N₂) containing 200 ppm of toluene passed through the catalyst layer (0.1 g) with the total flow rate of 52.2 mL/min, giving a gas hourly space velocity (GHSV) of 31,320 mL/g (h). The concentration of toluene and the evolution of CO₂ were monitored by an on-line gas chromatograph equipped with two flame ionization detectors (FID) and a nickel-based methanizer. The toluene conversion, CO₂ yield, toluene degradation rate and CO₂ production rate for the photocatalytic reaction were calculated by using Eqs. (1)–(4), respectively.

\[
\text{Toluene conversion} (\%) = 100\% \times \frac{\left(\text{Toluene}_{\text{in}} - \text{Toluene}_{\text{out}}\right)}{\text{Toluene}_{\text{in}}} \tag{1}
\]
CO2 yield (%) = 100% × [CO2]produced/[CO2]theoretical \hspace{1cm} (2)

Toluene degradation rate (μmol g⁻¹ min⁻¹) = (|Toluene|_{in} - |Toluene|_{out})/(mass time) \hspace{1cm} (3)

CO2 production rate (μmol g⁻¹ min⁻¹) = [CO2]produced/(mass time) \hspace{1cm} (4)

3. Results and discussion

The XRD patterns of the CeO2/LaMnO3 composite, along with LaMnO3 and CeO2 references are shown in Fig. 1(a). It is obvious that the CeO2/LaMnO3 sample exhibits diffraction peaks corresponding to cubic LaMnO3 perovskite phase and cubic CeO2 crystalline phase, where the peaks at 20 value of 22.9°, 32.7°, 40.2°, 46.9°, 52.8°, 58.2°, 68.1°, 73.1°, 78.0°, 82.4° and 86.8° are indexed to (100), (110), (111), (200), (210), (211), (220), (300), (310), (311) and (222) crystal planes of LaMnO3 (JCPDS PDF # 01-075-0440) and the peaks at 20 value of 28.2° and 56.0° are assigned to (111) and (311) crystal planes of CeO2 (JCPDS PDF # 01-089-8436), respectively. It can be seen from the enlarged scale of 2θ at around 28.2° and 56.0° in Fig. 1(b) that the peaks corresponding to CeO2 in CeO2/LaMnO3 sample slightly shift to lower diffraction angles compared with that of pure CeO2 (JCPDS PDF # 01-081-0792) sample, indicating an intense interaction between LaMnO3 and CeO2.

The microscopic structure of CeO2/LaMnO3 composite was characterized by SEM. As can be seen in Fig. 2(a) and (b), the surface morphologies of LaMnO3-based perovskites are similar, both of which are composed of irregularly morphological interconnected sub-microparticles with a length of 0.1–0.5 μm, revealing a porous structure with interconnected nano-sized particles. Fig. 2(c) presents the agglomeration of CeO2 NPs in the uniform size distribution with the average size of 40–50 nm. Moreover, TEM and HRTEM are further performed to look into the detailed morphology of CeO2/LaMnO3. As can be seen in Fig. 2(d) and (e), these interconnected nanoparticles are highly crystalline and the fast Fourier transform (FFT) patterns of the selected areas marked by the red and blue frame authenticate LaMnO3 cubic perovskite nanocrystals with 0.274 nm lattice spacing of (110) facet and CeO2 cubic nanocrystals with 0.314 nm lattice spacing of (111) facet, respectively. A selected area electron diffraction (SAED) was carried out to record bright electron diffraction rings aiming at identifying the crystal structure of CeO2/LaMnO3 composite. The inset in Fig. 2(e) indicates the formation of polycrystalline structure, which coincides with the XRD result. Furthermore, the elemental distributions in the CeO2/LaMnO3 composite were mapped by the energy dispersive X-ray (EDX) spectroscopic technique. As shown in Fig. 2(f), the elements of La, Mn, Ce and O distributed uniformly within the CeO2/LaMnO3 composite, suggesting that the CeO2 is homogeneous introduced into the LaMnO3.

UV–vis diffuse reflectance spectra (DRS) measurement was performed to evaluate the optical response of the catalysts. Fig. 3 shows the absorption spectra of CeO2/LaMnO3 composite as compared with those of pure CeO2 and LaMnO3 catalysts. The pure CeO2 looks pale yellow (inset in Fig. 3) and displays two typical absorption edges (305 and 398 nm) with intense transition in the UV region, as a result of the charge-transfer transition from O 2p to Ce 4f/Ce 5d orbitals in the intrinsic band gap absorption of CeO2 [18,19], but with almost no absorption in the Vis-IR region. The bare LaMnO3 with a color of black exhibits a strong absorption of 95.1% over the whole range of 300–1800 nm, which is attributed to electronic interactions between CeO2 and LaMnO3 [20] as well as reduced reflection of light [21]. An ideal light absorber that a dark material absorbs, radiation at all angles and polarizations [22], which demonstrates its possible potential as a suitable catalyst that efficiently absorbs light and releases the adsorbed photons in the form of heat (photo-thermal effect), resulting in a considerable increase of temperature, enough to trigger/accelerate catalytic reactions. The LaMnO3-based catalysts, featuring the broad light wavelength absorption (800–1800 nm), can thus be expected to be a highly active photothermal responsive catalyst toward a target reaction through creating a pronounced temperature increase under IR irradiation.

To confirm whether the broad IR absorption identified for LaMnO3-based material is capable of driving solar energy conversion, the catalytic activity of CeO2/LaMnO3 composite was evaluated by catalytic oxidation of gaseous toluene under IR light irradiation. The catalytic performance of CeO2/LaMnO3 composite under IR lamp with different light intensities as a function of irradiation time is illustrated in Fig. 4(a) and (b). As expected, CeO2/LaMnO3 composite shows much higher catalytic activity than CeO2 and LaMnO3 monocomponent under identical irradiation intensity. Remarkably, the conversion of toluene and yield of CO2 greatly increase with elevated light intensities from 156, 190, 240 to 280 mW/cm². Specifically, the catalytic activities of these samples follow the sequence CeO2/LaMnO3 > LaMnO3 > CeO2. Within 120 min of IR irradiation of 280 mW/cm², the CeO2/LaMnO3 composite shows the most active for catalytic oxidation of toluene with the maximum toluene conversion of 89% and CO2 yield of 87%. As reflected by Fig. 4(c) and (d), the degradation efficiency over CeO2/LaMnO3 composite is provided with toluene degradation rate of 0.198 μmol g⁻¹ min⁻¹ and CO2 production rate of 7.090 μmol
$g^{-1} \text{min}^{-1}$, which is much higher than that of 0.002 and 0 μmol $g^{-1} \text{min}^{-1}$ over CeO$_2$ and that of 0.016 and 1.076 μmol $g^{-1} \text{min}^{-1}$ over LaMnO$_3$, respectively. It is noted that the degradation efficiency depends on the light intensity where the degradation efficiency increases remarkably as the light intensity increases. These results demonstrate that the homogeneous introduction of CeO$_2$ into LaMnO$_3$ induces significant improvement in the IR-driven photodegradation efficiency. The TOF of the catalysts were estimated on the assumption that all the Mn$^{4+}$ were accessible to the reactants. Fig. S2 shows the dependence of TOF$_{\text{Mn}}$ on the reaction temperature in the photo-thermal catalytic decomposition of toluene at a conversion less than 20% over CeO$_2$/LaMnO$_3$ and LaMnO$_3$ catalysts. The TOF$_{\text{Mn}}$ over each catalyst increases as the reaction temperature increases. The TOF of CeO$_2$/LaMnO$_3$ is 0.120 s$^{-1}$ at 198 °C and dramatically increases to 0.191 s$^{-1}$ at 218 °C. In contrast, the TOFs of LaMnO$_3$ are 0.022 s$^{-1}$ at 198 °C and 0.083 s$^{-1}$ at 218 °C, respectively. The result confirms that the catalytic activity of CeO$_2$/LaMnO$_3$ is intrinsically superior to that of LaMnO$_3$. To gain further insight into the synergy effect between CeO$_2$ and LaMnO$_3$, apparent activation energies (E_{app}) of CO$_2$ yield below 20% mineralization of toluene is calculated according to the slope values for linear-fitting Arrhenius plots in Fig. 4(e) [25,26]. The result reveals that the E_a values decrease in the following order: CeO$_2$ (105.98 kJ/mol) > LaMnO$_3$ (101.77 kJ/mol) > CeO$_2$/LaMnO$_3$ (83.98 kJ/mol). Obviously, CeO$_2$/LaMnO$_3$ composite displays much lower activation energy than pure CeO$_2$ and LaMnO$_3$, indicating that toluene oxidation over CeO$_2$/LaMnO$_3$ catalyst proceeds much easier [27]. This result confirms that the homogeneous introduction of Ce into LaMnO$_3$ to form CeO$_2$/LaMnO$_3$ composite performs excellently in catalyzing the complete oxidation of toluene [28]. Impressively, the stability experiment of CeO$_2$/LaMnO$_3$ composite shown in Fig. 4(f) clearly exhibits that the toluene conversion and CO$_2$ yield are close to 76% and 60% over consecutive irradiation of 30 h (a cycle for 2 h, 15 cycles) under IR irradiation with 260 mW/cm2 light intensity.

To further identify whether the high catalytic activity of CeO$_2$/LaMnO$_3$ under IR irradiation arises from photocatalysis, the photocatalytic activity of CeO$_2$/LaMnO$_3$ composite for toluene oxidation was performed. 100 mg of CeO$_2$/LaMnO$_3$ was coated on a cylindrical quartz reactor (5 cm × 5 cm × 1 cm) and then the reactor was placed in a glycerol-water bath of ultralow temperature (−20 °C) to ensure the photocatalytic reaction with IR irradiation of 280 mW/cm2 has cooled.
to a temperature below which light-off occurs. As shown in Fig. S3, neither distinct photo-degradation of toluene nor discernable generation of CO$_2$ can be clearly observed, indicating that the CeO$_2$/LaMnO$_3$ is IR light photocatalytically inert material toward the oxidation of toluene which is possibly attributed to (1) wide-bandgap of bulk CeO$_2$ (3.15 eV) [29], not being able to be activated by the inadequate excitation energy of IR photon, and (2) the narrow bandgap of LaMnO$_3$ endowed the holes in the composite with insufficient oxidation capacity and ineffective transfer to the VB of CeO$_2$, resulting in a quick depletion of excitation energy. The experimental and theoretical studies of IR-absorption in previous research works [14–16] indicate that LaMnO$_3$ single crystal has led to the observation of well-defined IR-absorption peaks in connection with free Jahn-Teller hole polarons and Jahn-Teller hole polarons within localized charge transfer vibronic excitons (Mn$^{4+}$-Mn$^{2+}$ pairs), which may give LaMnO$_3$ and LaMnO$_3$-based materials unique thermal properties, where LaMnO$_3$ as nanometer-sized heater can strongly absorb IR light and effectively convert it into thermal energy to raise the temperature of material.

As shown in Fig. 5(a), the temperatures of bare LaMnO$_3$ and CeO$_2$/LaMnO$_3$ composite quickly increase from room temperature to around 198 °C, 219 °C, 255 °C and 275 °C with the lamp on the light intensities of 156, 194, 240 and 280 mW/cm2, respectively. When the temperature reaches a plateau, an equilibrium is established between the absorption of light energy and the energy dissipation from the catalyst to the surroundings [30]. The plateau temperatures of the catalysts displayed in Fig. 5(b) demonstrate direct evidence for their efficient photo-thermal conversion, which was expected to trigger and accelerate chemical reactions nearby. Obviously, the positive relationship between toluene degradation rate/CO$_2$ production rate and light intensity can be explained by a photo-thermal effect since a stronger light intensity results in a higher reaction temperature, which is extremely favorable for endothermic reactions, i.e., catalytic oxidation of toluene. Significantly, these observations indicate that the efficient infrared light promoted degradation of toluene over CeO$_2$/LaMnO$_3$ composite should be closely associated with the photo-thermocatalysis. The photo-thermal conversion efficiency (η) is defined as the ratio of the converted
thermal energy to the incident light energy \([31]\) where the maximum efficiency and equilibrium efficiency reach 15.2% and 2.5% for CeO\(_2\)/LaMnO\(_3\) composite under IR irradiation of 280 mW/cm\(^2\), respectively, which is shown in Fig. 5(c).

With the goal of understanding the origin of observed efficient infrared light promoted degradation of toluene over photo-thermal responsive CeO\(_2\)/LaMnO\(_3\) composite, a series of characterizations such as BET, \(\text{H}_2\)-TPR, toluene-TPD, \(\text{O}_2\)-TPD and XPS were further carried out to explore the textural structures and physicochemical properties of the material. \(\text{N}_2\) adsorption-desorption isotherms of the CeO\(_2\)/LaMnO\(_3\), along with CeO\(_2\) and LaMnO\(_3\) samples are shown in Fig. S4 and their pore parameters/BET surface areas are summarized in Table 1. It is obvious that all of the samples display a similar type IV isotherm, showing pore condensation with remarkable adsorption-desorption hysteresis, which indicates that these samples are materials with mesoporous structures. The corresponding surface area and pore volume are calculated by the BET and BJH methods \([32]\), respectively. As can be seen from Table 1, the BET surface area of the LaMnO\(_3\) sample is 14.275 m\(^2\)/g. With the homogenous introduction of CeO\(_2\) into LaMnO\(_3\), the BET surface area slightly decreases to 12.775 m\(^2\)/g. The large specific surface area, in most cases, confers abundant active sites for gas absorption and serves as an important reason for the improvement of catalytic activity \([33]\), but in this work, it is not a decisive factor, since the results of specific surface area are inconsistent with photo-thermal catalytic activities. Moreover, the toluene-TPD experiment result in Fig. S5 shows that CeO\(_2\)/LaMnO\(_3\) hybrid exhibits stronger adsorption capability toward reactant than monocomponent CeO\(_2\) and LaMnO\(_3\), stemming from an intense interaction of LaMnO\(_3\) with CeO\(_2\).

To investigate the relative reducibility of CeO\(_2\)/LaMnO\(_3\), \(\text{H}_2\)-TPR experiment was performed using LaMnO\(_3\) and CeO\(_2\) as reference samples. The normalized \(\text{H}_2\)-TPR profiles are shown in Fig. 6(a), and \(\text{H}_2\) consumption calculated through quantitative integration of the corresponding TPR peak is listed in Table 1. The LaMnO\(_3\) spectrum exhibits two obvious reduction peaks where the low temperature sharp peak in the range of 235–595 °C corresponds to the removal of a small amount of adsorbed oxygen species, reduction of Mn\(^{4+}\) to Mn\(^{3+}\) as well as a single electron reduction of Mn\(^{3+}\) located in a highly coordination-saturated microenvironment to Mn\(^{2+}\) \([34,35]\); whereas the high temperature broad peak centered at 829 °C, is most likely referred to the reduction of the remaining Mn\(^{3+}\) to Mn\(^{2+}\), leading to the collapse of perovskite phase and the formation of discrete oxide phases (La\(_2\)O\(_3\) and MnO) \([34]\). The CeO\(_2\) spectrum shows one small sharp peak centered at 514 °C and one broad peak at 812 °C, belonging to the reduction of surface-capping oxygen in lattice and the reduction of bulk oxygen of CeO\(_2\) \([36]\), respectively. The CeO\(_2\)/LaMnO\(_3\) spectrum displays a broad peak centered at 343 °C with two shoulders and a large peak centered at 832 °C, respectively. It is noted that the center position of first reduction peak largely shifts to low temperature and its homologous \(\text{H}_2\)-uptake is significantly increased to 1296.0 μmol/g compared with those of pure CeO\(_2\) with 60.9 μmol/g and LaMnO\(_3\) with 410.5 μmol/g. Quantitative results of \(\text{H}_2\)-TPR for the overall temperature domain (50–910 °C) reveal that LaMnO\(_3\) sample has greater \(\text{H}_2\)-uptake with a total of 3419.2 μmol/g than that of CeO\(_2\)/LaMnO\(_3\) with 3373.9 μmol/g and CeO\(_2\) with 920.8 μmol/g. However, in general, not all the oxygen atoms participate in the redox reaction, and reactive oxygen species such as surface lattice oxygen is closely related to catalytic performance which is reflected by low temperature reducibility, thus the initial \(\text{H}_2\) consumption rate at low temperature is further

<table>
<thead>
<tr>
<th>Entry</th>
<th>CeO(_2)/LaMnO(_3)</th>
<th>LaMnO(_3)</th>
<th>CeO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbance (%)(^a)</td>
<td>95.5</td>
<td>95.1</td>
<td>0.0</td>
</tr>
<tr>
<td>(S_{\text{RC}}) (m(^2)g(^{-1}))</td>
<td>12.775</td>
<td>14.275</td>
<td>9.658</td>
</tr>
<tr>
<td>Porosity volume (cm(^3)g(^{-1}))</td>
<td>0.092</td>
<td>0.114</td>
<td>0.097</td>
</tr>
<tr>
<td>(E_{\text{a}}) (kJ/mol)</td>
<td>83.98</td>
<td>101.77</td>
<td>105.98</td>
</tr>
<tr>
<td>TOP_{\text{gas}} (s(^{-1}))</td>
<td>0.120</td>
<td>0.222</td>
<td>/</td>
</tr>
<tr>
<td>198 °C</td>
<td>0.191</td>
<td>0.083</td>
<td>/</td>
</tr>
<tr>
<td>218 °C</td>
<td>0.472</td>
<td>0.489</td>
<td>/</td>
</tr>
<tr>
<td>Surface element ratio (\text{Mn}^{3+}/\text{Mn}^{2+})</td>
<td>1.351</td>
<td>0.770</td>
<td>/</td>
</tr>
<tr>
<td>Surface element (\text{H}_2) consumption ((\mu\text{mol/g}))</td>
<td>3373.9</td>
<td>3419.2</td>
<td>920.8</td>
</tr>
<tr>
<td>< 500 °C</td>
<td>1296.0</td>
<td>410.5</td>
<td>60.9</td>
</tr>
<tr>
<td>≥ 500 °C</td>
<td>2077.9</td>
<td>3008.7</td>
<td>859.9</td>
</tr>
</tbody>
</table>

\(^a\) Absorbance \((a = (1 - R(\lambda))^{-1}E_{\lambda} / E_{\lambda 0})\) from Fig. S1 \([23,24]\).

\(^b\) Surface elemental compositions from XPS.

\(^c\) \(\text{H}_2\) consumption form \(\text{H}_2\)-TPR profiles.

Fig. 5. (a) The temperature curve of CeO\(_2\), LaMnO\(_3\) and CeO\(_2\)/LaMnO\(_3\) materials upon IR irradiation with various light intensities (156, 194, 240 and 280 mW/cm\(^2\)), (b) the corresponding equilibrium temperature and (c) photo-thermal conversion efficiency of CeO\(_2\)/LaMnO\(_3\) composite under IR irradiation of 280 mW/cm\(^2\).
applied to investigate the difference of reducibility [37]. As shown in Fig. 6(b), the low temperature H_2 consumption rates of the samples increase in the order of CeO$_2$ < LaMnO$_3$ < CeO$_2$/LaMnO$_3$, which implies that homogeneous introduction of CeO$_2$ into LaMnO$_3$ can enhance the low temperature reducibility of catalyst at operating temperature range.

The oxide with good reducibility generally presents abundant active oxygen species and this process proceeds at relatively low temperature or high oxygen mobility, allowing the transport of oxygen species with high efficiency [38]. O$_2$-TPD can be performed to investigate the type and mobility of oxygen species. Before the desorbed gas entered into the TCD, a cold trap was installed to avoid the effect of H$_2$O [39], and all the normalized results are shown in Fig. 6(c).

For pure LaMnO$_3$ sample, no obvious oxygen desorption can be observed before 500°C. As the temperature increased, a distinct desorption peak located at 642°C with a shoulder at 711°C as well as a wide range of peak centered at around 884°C appears. For pure CeO$_2$ sample, the desorption oxygen initially occurs at 580°C but proceeds slowly with increasing temperature. Obviously, a very intense peak appears at 826°C with an overlapping shoulder around 735°C. For the CeO$_2$/LaMnO$_3$ catalyst, three oxygen desorption regions in the temperature range of 280–500°C, 500–780°C and 780–900°C are clearly observed. On the basis of literature results [37,40,41], the oxygen desorption peaks located at temperature ranges at low temperature (100–200°C) for desorption of adsorbed molecule oxygen or surface adsorbed peroxy species, at middle temperature (200–500°C) for desorption of labile lattice oxygen on/near the surface layer of material and at high temperature (500–900°C) for desorption of lattice oxygen from the framework of catalyst in the bulk, respectively. Many catalytic reactions, even under practical conditions, take place at the temperature less than 500°C. Consequently, the main attention is focused on the oxygen desorption behavior of low/middle temperature. Moreover, the onset desorbed temperature of lattice oxygen species reflects the oxygen mobility. Compared with pure LaMnO$_3$ and CeO$_2$, the desorption area at the middle temperature of 200–500°C was extremely enlarged with the formation of CeO$_2$/LaMnO$_3$ composite and the quantified results are listed in Table 1. The amount of desorbed surface lattice oxygen from the applied catalysts follows the sequence of CeO$_2$/LaMnO$_3$ > LaMnO$_3$ > CeO$_2$. Thus, we can draw a conclusion that the homogeneous introduction of Ce into LaMnO$_3$ to form CeO$_2$/LaMnO$_3$ composite is beneficial to activate the surface lattice oxygen, accelerate oxygen transfer and enlarge its quantity [42].

XPS was further employed to investigate surface elemental compositions, chemical state and the nature of the adsorbed oxygen species in oxide samples. As shown in Fig. 7(a), an asymmetrical Mn 2p$_{3/2}$/2 peak could be deconvoluted into two components with a binding energy of 641.6 and 643.3 eV, attributable to Mn$^{3+}$ ions and Mn$^{4+}$ ions, respectively, which indicates that Mn$^{3+}$ and Mn$^{4+}$ ions coexisted in LaMnO$_3$-based samples. The Ce 3d spectrum was composed of two multiplets (v and u), corresponding to the spin-orbit split 3d$_{5/2}$ and 3d$_{3/2}$ core holes. As shown in Fig. 7(b), the spin-orbit component is dominated by three features at Ce 3d4f2 O 2p4 (v = 882.5 eV, u = 900.6 eV), Ce 3d4f1 O 2p5 (v$_1$ = 888.4 eV, u$_1$ = 906.5 eV) and Ce 3d4f0 O 2p6 (v$_2$ = 897.9 eV, u$_2$ = 916.0 eV) states, all referring to Ce$^{4+}$ with different electron configuration states [43], which reveals that Ce$^{4+}$ was the dominant species in the CeO$_2$/LaMnO$_3$ sample originating from the good stability of Ce$^{4+}$ at high calcination temperature. As seen in Fig. 7(c), the asymmetrical O 1s spectrum of CeO$_2$/LaMnO$_3$ sample could be deconvoluted into three components with a binding energy of 529.3, 531.0, and 532.5 eV, corresponding to the surface lattice oxygen (O$_{\text{latt}}$), adsorbed oxygen (O$_{\text{ads}}$, e.g. O$_2^{2-}$, O$_2^{2-}$ or O$^-$) and adsorbed molecular water [44,45], respectively. From the calculated O$_{\text{latt}}$/O$_{\text{ads}}$ molar ratio in Table 1, the O$_{\text{ads}}$ concentration of CeO$_2$/LaMnO$_3$ composite is much higher than that of LaMnO$_3$, but the surface Mn$^{3+}$/Mn$^{4+}$ molar ratios slightly decreased to 0.472. In addition, the O$_{\text{ads}}$ species concentration is closely associated with the adsorption and/or activation of VOCs molecules, which suggests that a higher O$_{\text{ads}}$ species concentration would be beneficial to the Mars-van Krevelen (MvK) oxidation reaction. In order to verify the nature of lattice oxygen involved in the oxidation of VOC over CeO$_2$/LaMnO$_3$, temperature-programmed surface reactions (TPSR) [46] were performed on a Quantachrome Chemstar automatic catalyst characterization system. 200 mg of each sample was loaded into a U-shape quartz reactor and purged with He at 300°C for 1 h to remove adsorbed hydrates. Then, after cooling to room temperature the flowing gas was switched to a toluene/He for 1 h. Next, after saturation adsorption of toluene, the system was flushed with helium for 1 h and the catalyst was heated to 800°C at a ramping rate of 10°C min$^{-1}$. The reaction product generated during the TPSR experiment was monitored in situ by mass
spectroscopy, where the signal for mass-to-charge ratio \(m/z = 44 \) represents CO\(_2\), \(m/z = 18 \) represents H\(_2\)O, \(m/z = 32 \) represents O\(_2\), and \(m/z = 92 \) represents toluene. Under oxygen free atmosphere, both normalized \(m/z = 44 \) and \(m/z = 18 \) were detected during the TPSR for CeO\(_2\)/LaMnO\(_3\) as shown in Fig. 8(a). The release of CO\(_2\) (two oxygens from the oxide lattice) requires the extraction of lattice oxygen from metal oxides and the formation of oxygen vacancies during the TPSR, indicating the involvement of lattice oxygen in toluene oxidation (MVK mechanism). Of significance, lattice oxygen oxidation during the TPSR measured from CeO\(_2\)/LaMnO\(_3\) is more pronounced than that for CeO\(_2\) and LaMnO\(_3\), as the normalized \(m/z = 44 \) signal in Fig. 8(b) detected from CeO\(_2\)/LaMnO\(_3\) composite is greater, implying a higher concentration of lattice oxygen species.

Why does CeO\(_2\)/LaMnO\(_3\) composite achieve efficient photo-thermal catalytic activity? It has been widely accepted that catalytic oxidation of volatile organic compounds over reducible metal oxides follows a MVK mechanism where organic compounds react with surface lattice oxygen of metal oxides and leave behind oxygen vacancies on the surface which are subsequently replenished by dissociated molecular oxygen [47]. The key characteristic feature of MVK mechanism is that the oxide surface is directly involved via its most reactive surface lattice oxygen atoms, rather than just a spectator of the reaction. To validate whether or not MVK mechanism also occurs on CeO\(_2\)/LaMnO\(_3\) composite, in situ DRIFTS spectroscopy was performed to inspect the effect of surface lattice oxygen on toluene oxidation reactivity [48]. Prior to toluene adsorption and reaction experiments, the catalyst was flushed with high-purity N\(_2\) at 260 °C for 1 h to remove adsorbed impurities (background spectrum was collected and automatically deducted from the sample spectra), and afterwards 1000 ppm toluene/N\(_2\) was introduced to the cell at a flow rate of 50 mL/min at 260 °C. A series of DRIFTS spectra recorded during gaseous toluene/N\(_2\) exposure over CeO\(_2\)/LaMnO\(_3\) catalyst are displayed in Fig. 9. The broad peaks at 2962, 2918, 2868 and 2848 cm\(^{-1}\) are associated with C–H stretching vibrations of the aromatic ring and asymmetric/symmetric C–H stretching vibrations of methyl group [49]. The weak band at 1234 cm\(^{-1}\) is characteristic of ring vibrations [27]. These absorption peaks develop rapidly and reach steady level within a few minutes after the introduction of gaseous toluene into the cell. In particular, an intense
peak at 1182 cm\(^{-1}\) with a small shoulder at 1087 cm\(^{-1}\) can be assigned to C–O stretching vibration of an alkoxide species [50]. The peak at 974 cm\(^{-1}\) corresponds to the bending vibration and torsional vibration of CH\(_2\) [51]. The appearance of these absorption peaks indicate that the C–H bond of methyl group of aromatic ring is cleaved to generate C–O bond in which the oxygen atoms come from the catalyst, giving rise to a benzoyl intermediate (C\(_6\)H\(_5\)–CH\(_2\)–O) [39], which is attached to the surface of CeO\(_2\)/LaMnO\(_3\). The new doublet peaks located at 2364 and 2342 cm\(^{-1}\) are characteristic of asymmetric O\(\equiv\)C–O stretching vibrations [52,53], and the intensities of their peaks linearly increase with time on stream then decrease to zero, due to the contribution of generated CO\(_2\) from deep oxidation of adsorbed toluene species with the limited supply of lattice oxygen. Because the involvement of adsorbed oxygen or gaseous oxygen in the activation of toluene is entirely excluded, these observations support the assumption that this oxidation reaction on CeO\(_2\)/LaMnO\(_3\) catalyst follows a MvK mechanism where adsorbed toluene can actively react with surface lattice oxygen to give final product CO\(_2\) under oxygen-free condition.

The oxidation of toluene occurs by means of the surface lattice oxygen of the catalyst, thus, refilling of oxygen vacancies is of great importance for the oxidation process. To reveal more details of the reaction on catalyst surface and identify the evolved surface chemical species, in situ DRIFTS was also performed in a flow of toluene/21% O\(_2\)/N\(_2\) feed gas. In Fig. 10, each spectrum was collected during 30 min oxidation reaction at the specified temperature. In contrast to oxygen-free feed experiment, CO\(_2\) doublet peaks around 2364 and 2342 cm\(^{-1}\) are also clearly observed at the temperature of 100 °C or above and the intensities of CO\(_2\) peaks are gradually intensified with the elevated temperature. Notably, the new peaks at 3080, 3042 and 3033 cm\(^{-1}\) are associated with C–H stretching vibrations of aromatic ring of an undissociated adsorbed toluene molecule, which is accompanied by the peaks at 2937 and 2884 cm\(^{-1}\) representing asymmetric and symmetric C–H stretching vibrations of methyl group, and by the peaks at 1602 and 1500 cm\(^{-1}\) representing in-plane skeletal vibration of the aromatic ring. Even after elevating the sample temperature to 260 °C, the IR features of all three types of adsorbed toluene remain very stable. The week peaks at 1085 and 1032 cm\(^{-1}\) are associated with C–O stretching vibration of adsorption intermediates of toluene [50,54]. Note that the peak assigned to CH\(_2\) at around 970 cm\(^{-1}\) is not observed in a toluene/20% O\(_2\)/N\(_2\) feed gas, suggesting that the H of CH\(_3\) group is not abstracted. These observations clearly demonstrate that gaseous toluene molecule adsorbed onto the surface of CeO\(_2\)/LaMnO\(_3\) through a weak interaction of the aromatic ring with the catalyst [39], rather than through benzoyl oxide species (C\(_6\)H\(_5\)O–CH\(_2\)–O). In order to track the intermediates during the adsorption/oxidation process of toluene, in situ DRIFTS is applied again to investigate its partial oxidation at low temperature. A pure air gas bubbling through a liquid toluene was introduced to the CeO\(_2\)/LaMnO\(_3\) composite for 60 min. Subsequently, only pure air gas was introduced to investigate the intermediates at ambient temperature or above. The recorded spectra are shown in Fig. 11(a). The peaks at 1608, 1450 and 1381 cm\(^{-1}\) are observable at the temperature of 35 °C, and can be assigned to C═O vibration of benzoquinone derivative.
A TPO experiment further performed to verify the formation of benzoquinone derivative such as 4-methyl-1,2-benzoquinone on basis of characteristic fraction peaks (m/z = 122, 94, 88, 66, 39) recorded by on-line MS as shown in Fig. 11(b). Based on the above DRIFTS and TPO observations, a plausible reaction mechanism for toluene oxidation over CeO$_2$/LaMnO$_3$ catalyst is proposed and shown in Fig. 12. Upon IR irradiation, photo-thermal responsive CeO$_2$/LaMnO$_3$ composite achieves broad spectrum utilization for thermalization where black CeO$_2$/LaMnO$_3$ via hole polarons within localized charge transfer vibronic excitons absorbs IR light, releases the absorbed light energy in the form of heat and ultimately dissipates into the surrounding medium. When the local temperature increases above the light-off temperature of toluene thermocatalytic reaction on CeO$_2$/LaMnO$_3$ composite, the thermocatalytic reaction occurs via a MvK mechanism. Under oxygen-rich condition, the toluene molecule is firstly adsorbed on the surface oxygen lattice of CeO$_2$/LaMnO$_3$ catalyst via the three possible sites (ortho-, meta-, or para-). Then, hydrogen atoms are abstracted from the aromatic ring of toluene by surface oxygen lattice to produce benzoquinone derivative [55,57]. These intermediates are further oxidized by surface lattice oxygen atoms located at low-coordinated sites on the CeO$_2$/LaMnO$_3$ and completely decomposed to final products of CO$_2$ and H$_2$O, simultaneously leaving behind oxygen vacancies on the surface where metal oxide lose oxygen atoms and donate them to the adsorbed toluene molecule during the process. Subsequently, molecular oxygen can adsorb onto the surface of CeO$_2$/LaMnO$_3$ composite, dissociate and eventually refill vacancies created in the oxidative process [58], by which the continuous efficient catalytic oxidation of toluene proceeds. Consequently, the rate of oxidation/reduction cycle and oxygen desorption capacity of a catalyst play very significant roles in catalytic oxidation reactions [59]. In this work, the catalytic performance of material increases with elevating low temperature reducibility and accelerating lattice oxygen mobility, which accounts for the enhancement activity of CeO$_2$/LaMnO$_3$.

4. Conclusion

The utilization of renewable solar energy via infrared light photo-thermocatalysis provides a potential alternative strategy in environmental pollutants purification. Noble metal free CeO$_2$/LaMnO$_3$ hybrid exhibits ultrabroadband strong light absorption, efficient light-to-heat conversion, good low temperature reducibility and high lattice oxygen mobility, giving a prominent toluene conversion of 89% and CO$_2$ yield...
of 87% under IR irradiation intensity of 280 mW/cm², together with excellent stability. This work highlights that LaMnO₃-based composite as IR light photon absorber shows great promise for redox reactions through photo-thermal effect, which provides an alternative and feasible strategy for solar energy conversion.

Acknowledgments

This work was supported by the Natural Science Foundation of Fujian Province of China [Nos. 2016J01079, 2016J05049]; One Hundred Talent Project and the Key Program for Frontier Sciences-Youth Scientist from Chinese Academy of Sciences [QYZDB-SSW-DQC022]; National Natural Science Foundation of China [Nos. 21501175, 21703233]; Key Project of National Natural Science Foundation of China [U1443204]; Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Rolling Grant [2017J07002].

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.08.069.

References

