Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion

Ruming Wang, Chunxing Li, Nan Lv, Xiaofang Pan, Guanjing Cai, Jing Ning, Gefu Zhu

PII:	S0960-8524(21)00009-2
DOI:	https://doi.org/10.1016/j.biortech.2021.124671
Reference:	BITE 124671
To appear in:	Bioresource Technology
Received Date:	27 November 2020
Revised Date:	30 December 2020
Accepted Date:	1 January 2021

Please cite this article as: Wang, R., Li, C., Lv, N., Pan, X., Cai, G., Ning, J., Zhu, G., Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion, *Bioresource Technology* (2021), doi: https://doi.org/10.1016/j.biortech.2021.124671

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved.

1	Deeper insights into effect of activated carbon and nano-zero-valent
2	iron addition on acidogenesis and whole anaerobic digestion
3	Ruming Wang ^{a,b} , Chunxing Li ^c , Nan Lv ^{a,b} , Xiaofang Pan ^a , Guanjing Cai ^a , Jing Ning ^a , Gefu
4	Zhu ^{a,d*}
5	a Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment,
6	Chinese Academy of Sciences, Xiamen 361021, China
7	b University of Chinese Academy of Sciences, Beijing 100049, China
8	c Department of Environmental Engineering, Technical University of Denmark, DK-
9	2800 Lyngby, Denmark
10	d School of Environment and Nature Resources, Renmin University of China, Beijing
11	1000872, PR China

12

* Corresponding author

E-mail: gfzhu@iue.ac.cn; Phone: 86-592-6190790; Fax: 86-592-6190790.

13	Abstract: Conductive materials presented promising advantages for enhancing
14	anaerobic digestion (AD) performance. This study evaluated the effects of activated
15	carbon (AC) and nano-zero-valent iron (nZVI) on the acidogenesis and whole AD to
16	explore their potential mechanisms. AC increased the content of lactic and propionic
17	acids in acidogenesis. nZVI increased the production of formic acid, acetic acid and
18	H_2 in acidogenesis, thus significantly promoted the methane yield in the whole AD.
19	Mechanism exploration proved that AC enriched Trichococcus, and
20	norank_f_Bacteroidetes_vadinHA17, and then improved the activity of enzymes
21	involved in the production of lactic and propionic acids. nZVI buffered the pH to
22	increase the activity of pyruvate formate-lyase (PFL) in formic acid production.
23	Furthermore, nZVI enriched the Methanobacterium which use H ₂ and formic acid as
24	substrate. The research paves pathway for the efficient enhancement of conductive
25	materials added novel AD process.
26	Key words: Anaerobic digestion, Activated carbon, Nano-zero-valent iron,
27	Acidogenesis, Microbial community.
28	1. Introduction
29	Anaerobic digestion (AD) presented promising advantage in industrial and
30	agricultural waste treatment via converting organic waste into biogas in presence of
31	microorganism (Li et al., 2019). However, research showed that the process was still
32	limited by low acidification efficiency and the accumulation of volatile fatty acids
33	(VFAs) caused by slow syntrophic metabolism (Appels et al., 2011). Many studies
34	have shown that adding conductive materials to anaerobic digesters can accelerate and

35	stabilize the conversion of organic matter to methane (Dang et al., 2016; Zhang et al.,
36	2018). Previous research indicated that carbon-based materials including biochar,
37	activated carbon (AC) and carbon cloth or iron-based material including nano-zero-
38	valent iron (nZVI), magnetite and iron powder could promote the performance of AD
39	(Lim et al., 2020; Zhou et al., 2019; Li et al., 2019; Meng et al., 2013). Nevertheless,
40	the potential mechanism involving different conductive materials to improve the
41	performance of different stages of AD remains unclear.
42	Carbon materials are always used directly as an electron carrier to improve AD
43	efficiency by promoting electron transfer between syntrophic and methanogenic
44	partners (Liu et al., 2012a). Zhao et al. (2017) reported that after supplementing
45	granular activated carbon (GAC) in methanogenic phase, the methane production rate
46	improved by about 34%. Moreover, with a honeycomb pore structure, large specific
47	surface area and good adsorption performance, AC provides attachment sites for
48	microorganisms and helps reduce the impact of organic shock loads on the methane
49	production process (Aziz et al., 2011; Liu et al., 2012a). Also, it was reported that AC
50	could be used directly as an electron carrier to improve AD efficiency by promoting
51	electron transfer between syntrophic and methanogenic partners (Zhao et al., 2017;
52	Dang et al., 2016). nZVI, as a reducer, has high specific surface area, which is also
53	often used to enhance AD. Su et al. (2013) observed that adding 0.1% nZVI in
54	anaerobic system increased CH ₄ production by 40.4%. As a reducing substance, it
55	could lower the ORP to provide a better anaerobic environment for methanogens (Liu
56	et al., 2011). On the other hand, nZVI can produce hydrogen through chemical

57	corrosion (Eq. (1)), which improves the efficiency of hydrogenotrophic
58	methanogenesis (Hao et al., 2017). The produced Fe ²⁺ from nZVI is an important
59	element to many oxidoreductases, which can improve the metabolic activity of
60	microorganisms.
61	$Fe^{0} + 2H_{2}O \rightarrow Fe^{2+} + H_{2} + 2OH^{-}$ $\Delta G^{0} = -5.02 \text{ kJ/moL Fe}^{0}$ (1)
62	$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O \qquad \qquad \Delta G^0 = -131 \text{ kJ/moL} $ (2)
63	$8H^{+} + Fe^{0} + 4CO_{2} \rightarrow CH_{4} + 4Fe^{2+} + 2H_{2}O \Delta G^{0} = -150.5 \text{ kJ/moL CH}_{4} $ (3)
64	Previous studies have compared the mechanisms between different types of
65	conductive materials that enhance AD. However, the potential mechanisms of the
66	conductive materials in each stage of AD are also different. In general, AD mainly
67	involves four steps: hydrolysis, acidogenesis, acetogenesis, and methanogenesis.
68	Firstly, the complex organic matter is hydrolyzed into simple organic matter by
69	fermentation bacteria, and then these simple organics are converted into VFAs (lactic
70	acid, acetic acid, formic acid, propionic acid, butyric acid and H_2/CO_2). VFAs can be
71	converted into acetic and formic acids by acetogens, and finally they will be used by
72	methanogens to produce methane in methanogenesis. However, there are few
73	specifically produced substrates that can be used by methanogens, including H_2 (Eq.
74	(4)), formic acid (Eq. (5)) and acetic acid (Eq. (6)). It can be seen that VFAs are
75	important intermediates produced in the process of acidogenesis, acetogenesis and
76	methanogenesis. Therefore, the concentration and composition of VFAs directly
77	affects the efficiency of AD.

78
$$4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$$
 $\Delta G^0 = -135 \text{ kJ/moL}$ (4)

79	$4\text{HCOOH} \rightarrow \text{CH}_4 + 3\text{CO}_2 + 2\text{H}_2\text{O}$	$\Delta G^0 = -130 \text{ kJ/moL}$	(5)
80	$CH_3COOH \rightarrow CH_4 + CO_2$	$\Delta G^0 = -33 \text{ kJ/moL}$	(6)
81	According to our knowledge, previo	us researches mainly focused on th	ne
82	influence of conductive materials on the	performance of AD, especially for	the
83	methanogenesis. However, there has been	n less investigations into the poten	tial
84	connection between the acidogenesis and	the methanogenesis. Xie et al. (20	20) found
85	that AC increased short-chain fatty acids	production from algae during alka	line
86	anaerobic fermentation. Furthermore, it v	vas reported that nZVI promoted V	′FAs
87	production, and acetic acid dominated in	the batch system (Jin et al., 2019).	AC
88	improves the activity of key hydrolase en	zymes and the number of coding g	genes.
89	nZVI changes the community and metabolic	olism of microorganisms by adjust	ing pH and
90	reducing ORP. However, there was no co	onsensus on how conductive mater	ials affect
91	the conversion of various products in the	acidogenic phase. Additionally, th	e
92	relationship between microorganisms and	I materials are still unclear.	
93	According to the above, AC and nZ	VI were selected as conductive ma	terials to
94	deeply explore their effects on acidogene	sis and whole AD in this study. Or	ne aim was
95	to explore the effects of different conduct	tive materials on the conversion of	metabolic
96	products during AD. Another objective w	vas to dissect the microbial commu	nity
97	structure and metabolic mechanism in res	sponse to the addition of conductiv	e
98	materials.		
99	2. Material and methods		

100 2.1 Substrates and inoculum

101	The granular sludge used as seed sludge was collected from the starch
102	wastewater treatment plant in Xuzhou, China. The mixed liquor volatile suspended
103	solid (MLVSS) of inoculum was 23.33 g/L, and mixed liquor suspended solid
104	(MLSS) was 40.22 g/L.
105	In this experiment, artificial wastewater was used as the substrate. Glucose was
106	the carbon source and the chemical oxygen demand (COD) concentration was 2000
107	mg/L. In addition, NH ₄ Cl and KH ₂ PO ₄ were used as nitrogen source and phosphorus
108	source, respectively. The ratio of COD: N: P in influent was 800: 5: 1. Trace metal
109	solution and mineral elements were added to the reaction system to ensure the growth
110	conditions of microorganisms. Their compositions were as follows: trace metal
111	solution (mg/L): FeCl ₂ ·4H ₂ O, 2; H ₃ BO ₃ , 0.05; ZnCl ₂ , 0.05; CuCl ₂ ·2H ₂ O, 0.038;
112	MnCl ₂ ·4H ₂ O, 0.05; (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, 0.05; AlCl ₃ , 0.05; CoCl ₂ ·6H ₂ O, 0.05;
113	NiCl ₂ ·6H ₂ O, 0.09; Na ₂ WO ₄ ·2H ₂ O, 0.05; mineral elements (mg/L): CaCl ₂ , 50;
114	MgCl ₂ ·6H ₂ O, 100; NaCl, 100.
115	2.2 Batch Experimental design
116	2.2.1 Effect of conductive materials on acidogenesis
117	To elucidate the effect of materials on the acidogenesis, 2-bromoethane sulfonate
118	(BES) was added with concentration of 30 mM at the beginning to inhibit the activity
119	of methanogens. The experiment was performed in 120 ± 4 mL serum bottle with 40
120	mL of substrate and 10 mL of inoculum. For AC group, 0.25 g AC (10-15 mm,
121	Sigma) was supplemented into the bottle. For nZVI group, 0.25 g nZVI (99.9% metals
122	basis, 100 nm, Sigma) was added into the bottle. The group without materials addition

123	was used as blank. For each group, the experiment was performed in triplicates. In
124	order to maintain strict anaerobic conditions, pure nitrogen (99.99%) was blown into
125	the reactor for 15 minutes, and then the bottles were sealed with rubber stoppers.
126	Finally, the reaction bottles were placed in a water bath shaker at 37°C and stirred at
127	160 rpm for 54 h. For chemical analysis, pH, VFAs and biogas components were
128	measured at 6, 9, 12, 15, 18, 30 and 54 h.
129	2.2.2 Effects of conductive materials on whole AD
130	For the whole AD process, the experimental operation was consistent with the
131	acidogenesis but without adding 30 mM 2-BES to the bottles. All of these
132	experiments were conducted in triplicate. The bottles were incubated in a shaker at
133	37°C and stirred at 160 rpm for 31 days, and the biogas composition was monitored
134	every day.
135	2.3 Analytical methods
135 136	2.3 Analytical methods Gas composition were analyzed by gas chromatography (FULI, GC9790II,
135 136 137	2.3 Analytical methodsGas composition were analyzed by gas chromatography (FULI, GC9790II,China) equipped with a TDX-01 (2 m long and 3 mm in inner diameter) as a
135 136 137 138	2.3 Analytical methodsGas composition were analyzed by gas chromatography (FULI, GC9790II,China) equipped with a TDX-01 (2 m long and 3 mm in inner diameter) as aseparation column and argon as a carrier gas. The GC parameters were set as follows:
135 136 137 138 139	2.3 Analytical methods Gas composition were analyzed by gas chromatography (FULI, GC9790II, China) equipped with a TDX-01 (2 m long and 3 mm in inner diameter) as a separation column and argon as a carrier gas. The GC parameters were set as follows: column temperature, 120°C; detector temperature, 160°C; injection temperature,
135 136 137 138 139 140	 2.3 Analytical methods Gas composition were analyzed by gas chromatography (FULI, GC9790II, China) equipped with a TDX-01 (2 m long and 3 mm in inner diameter) as a separation column and argon as a carrier gas. The GC parameters were set as follows: column temperature, 120°C; detector temperature, 160°C; injection temperature, 160°C.
135 136 137 138 139 140 141	2.3 Analytical methods Gas composition were analyzed by gas chromatography (FULI, GC9790II, China) equipped with a TDX-01 (2 m long and 3 mm in inner diameter) as a separation column and argon as a carrier gas. The GC parameters were set as follows: column temperature, 120°C; detector temperature, 160°C; injection temperature, 160°C. For the measurement of VFAs, the mixed solution was first centrifuged at 8000
135 136 137 138 139 140 141 142	2.3 Analytical methods Gas composition were analyzed by gas chromatography (FULI, GC9790II, China) equipped with a TDX-01 (2 m long and 3 mm in inner diameter) as a separation column and argon as a carrier gas. The GC parameters were set as follows: column temperature, 120°C; detector temperature, 160°C; injection temperature, 160°C. For the measurement of VFAs, the mixed solution was first centrifuged at 8000 rpm for 5 min, then filtered through a 0.22 µm filter, and the supernatant was acidified
 135 136 137 138 139 140 141 142 143 	2.3 Analytical methods Gas composition were analyzed by gas chromatography (FULI, GC9790II, China) equipped with a TDX-01 (2 m long and 3 mm in inner diameter) as a separation column and argon as a carrier gas. The GC parameters were set as follows: column temperature, 120°C; detector temperature, 160°C; injection temperature, 160°C. For the measurement of VFAs, the mixed solution was first centrifuged at 8000 rpm for 5 min, then filtered through a 0.22 µm filter, and the supernatant was acidified with 2 M HCl to a pH below 2.0, and then stored at 4°C. Finally, ion chromatography

145	AS11) including analytical column (Dionex IonPacTM AS11-HC, 4 mm×250 mm)
146	and protect column (Dionex IonPacTM AG11-HC, 4 mm×50 mm) were used for
147	VFAs measurement. The MLSS, MLVSS, COD, pH and ORP values were
148	determined according to Standard Methods (APHA, 2012).
149	The cumulative volume of CH_4 was calculated by multiplying the headspace
150	volume (74 mL) by the percentage of CH_4 (mL CH_4/mL) in the headspace as
151	determined by GC analysis. The gas sample taken from the batch reactor should take
152	into account the pressure in the batch reactor, which should equilibrate in the batch
153	reactor. Additionally, the obtained cumulative CH ₄ production value was normalized
154	according to the ideal gas law ($PV = nRT$) in Standard Temperature and Pressure
155	(STP) conditions (0°C and 1 atm). The methane yield was expressed in NmLCH ₄ /g
156	COD (Pan et al., 2019).
156 157	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy
156 157 158	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy (SEM–EDS, S-4800, Japan) were used to determine morphology and chemical
156 157 158 159	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy (SEM–EDS, S-4800, Japan) were used to determine morphology and chemical composition of the sludge after acidogenesis. At the end of acidogenic phase, 5 mL
156 157 158 159 160	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy (SEM–EDS, S-4800, Japan) were used to determine morphology and chemical composition of the sludge after acidogenesis. At the end of acidogenic phase, 5 mL sludge sample was taken and centrifuged at 3000 rpm for 3 min, and then discard the
156 157 158 159 160 161	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy (SEM–EDS, S-4800, Japan) were used to determine morphology and chemical composition of the sludge after acidogenesis. At the end of acidogenic phase, 5 mL sludge sample was taken and centrifuged at 3000 rpm for 3 min, and then discard the liquid supernatant and fixed in 2.5% glutaraldehyde for 4 h at 4°C. Then the samples
156 157 158 159 160 161 162	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy (SEM–EDS, S-4800, Japan) were used to determine morphology and chemical composition of the sludge after acidogenesis. At the end of acidogenic phase, 5 mL sludge sample was taken and centrifuged at 3000 rpm for 3 min, and then discard the liquid supernatant and fixed in 2.5% glutaraldehyde for 4 h at 4°C. Then the samples were washed twice times with 0.1 M phosphate buffer (pH=7.4), 10 minutes for each
156 157 158 159 160 161 162 163	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy (SEM–EDS, S-4800, Japan) were used to determine morphology and chemical composition of the sludge after acidogenesis. At the end of acidogenic phase, 5 mL sludge sample was taken and centrifuged at 3000 rpm for 3 min, and then discard the liquid supernatant and fixed in 2.5% glutaraldehyde for 4 h at 4°C. Then the samples were washed twice times with 0.1 M phosphate buffer (pH=7.4), 10 minutes for each step. After that, samples were dehydrated through a graded ethanol series, by 50%,
156 157 158 159 160 161 162 163 164	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy (SEM–EDS, S-4800, Japan) were used to determine morphology and chemical composition of the sludge after acidogenesis. At the end of acidogenic phase, 5 mL sludge sample was taken and centrifuged at 3000 rpm for 3 min, and then discard the liquid supernatant and fixed in 2.5% glutaraldehyde for 4 h at 4°C. Then the samples were washed twice times with 0.1 M phosphate buffer (pH=7.4), 10 minutes for each step. After that, samples were dehydrated through a graded ethanol series, by 50%, 70%, 80% and 90%, 10 minutes for each step and keep samples at 4°C. Then, it was
156 157 158 159 160 161 162 163 164 165	COD (Pan et al., 2019). The scanning electron microscope and X-ray energy dispersive spectroscopy (SEM–EDS, S-4800, Japan) were used to determine morphology and chemical composition of the sludge after acidogenesis. At the end of acidogenic phase, 5 mL sludge sample was taken and centrifuged at 3000 rpm for 3 min, and then discard the liquid supernatant and fixed in 2.5% glutaraldehyde for 4 h at 4°C. Then the samples were washed twice times with 0.1 M phosphate buffer (pH=7.4), 10 minutes for each step. After that, samples were dehydrated through a graded ethanol series, by 50%, 70%, 80% and 90%, 10 minutes for each step and keep samples at 4°C. Then, it was dehydrated twice with 100% ethanol for 15 minutes each time. Finally, samples were

167 2.4 Microbial community analysis

168	Sludge samples were collected from the original inoculum, 9 h and 54 h of the
169	acidogenesis. In addition, the sludge samples were taken for microbiological analysis
170	at the end of whole AD. All samples were refrigerated at -20°C for subsequent
171	microbial analysis. DNA was extracted using Fast DNA Spin Kit for Soli (MP, USA)
172	method. The DNA concentration was determined by Nanodrop2000 (Thermo
173	Scientific, USA), and the purity was determined by measuring the absorbance ratio at
174	260/280 nm. The extracted DNA was stored at -20°C before measurement. The
175	microbial communities of the sludge were analyzed by high-throughput sequencing
176	on an Illumina MiSeq platform, which was performed by Majorbio Bio-Pharm
177	Technology Co. Ltd (Shanghai, China). The primers used for PCR amplification of
178	bacteria and archaea were 515Fmodf (GTGYCAGCMGCCGCGGTAA) and
179	806RmodR (GGACTACNVGGGTWTCTAAT), respectively, for the V4 region of
180	16S rRNA gene in each sludge sample.
181	Prediction of the metabolic function of bacteria and archaea in AD through
182	PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of
183	Unobserved States) was based on the Galaxy platform against the KEGG (Kyoto
184	Encyclopedia of Gene and Genome) Orthology database (Langille et al., 2013).
185	Specific steps are as follows: 1) The gene function spectrum of their common ancestor
186	was inferred based on the full-length 16S rRNA sequence of the tested bacterial
187	genome; 2) The gene function spectrum of other untested species in the Greengenes
188	database was inferred, and the gene function prediction spectrum of the entire lineage

189	of archaea and bacteria was constructed; 3) The sequenced 16S rRNA gene sequence
190	data was compared with the Greengenes database to found the "reference sequence
191	nearest neighbor" of each sequencing sequence, and was classified as a reference
192	OTU; 4) The obtained OTU abundance matrix was corrected according to the rRNA
193	gene copy number of the "reference sequence nearest neighbor"; 5) The KEGG
194	Orthology (KO) information corresponding to the OTU was obtained through the
195	greengene id corresponding to each OTU; 6) According to the information in the
196	KEGG database, KO information can be obtained, and the abundance of each
197	functional category can be calculated according to the OTU abundance.
198	2.5 Calculation
199	Acidification efficiency (AE, $\%$) was evaluated by the following Eq. (1):
200	$AE = \frac{COD_{VFAs}}{COD_{Influent}} \times 100\% $ (1)
201	Where $\text{COD}_{\text{Influent}}$ is the concentration of influent COD (mg/L), COD_{VFAs} is the
202	concentration of effluent VFAs (mgCOD/L) (Lu et al., 2012).
203	2.6 Statistical analysis
204	Statistical analysis was conducted using EXCEL 2016 and SPSS 26 software. In
205	addition, Origin 8.0 was used for graphics drawing. Free online platform
206	(http://www.i-sanger.com/) was Majorbio I-Sanger Cloud platform. The operational
207	taxonomic unit (OTU) table was normalized, and the functional genes in AD were
208	analyzed by the KEGG Orthology (KO) (http://www.kegg.jp/kegg/ko.html). A p
209	value of <0.05 indicates statistical significance.
210	3. Results and Discussion

211	3.1 Effect of conductive materials on VFAs, pH and gas content in acidogenesis
212	The composition of VFAs and biogas content in each group were measured (Fig.
213	1). As shown in Fig. 1a-b, the main products were VFAs (including lactic acid, formic
214	acid, acetic acid and propionic acid), and H_2/CO_2 after blocking the methanogenesis.
215	In the initial 9 h, the pH of blank, AC and nZVI groups dropped sharply from 8.2, 8.1
216	and 8.1 to 6.2, 6.0 and 6.7 (Fig. 1c), respectively. It indicated that glucose was quickly
217	converted into acidic products after experiments. The lactic and formic acids both
218	accumulated in the three groups, while acetic and propionic acids showed small
219	generation. Lactic acid increased by 22.05% in AC group, but there has been little
220	change in nZVI added group. The formic acid in the three groups reached the
221	maximum value at 9 h with 169.57 mg/L, 192.95 mg/L and 193.99 mg/L,
222	respectively. Formic acid increased by 13.79% and 14.40%, in AC and nZVI added
223	systems, separately. This result indicated that AC mainly promoted the production of
224	lactic acid, while nZVI mainly promoted the formic acid generation in the early stage.
225	After 9 h, acetic acid and propionic acid gradually accumulated in the reactors. The
226	acetic acid content of the blank, AC and nZVI groups at 54 h were 513.60 mg/L,
227	531.55 mg/L and 613.50 mg/L, respectively. Acetic acid increased by 19.45% in
228	nZVI added systems, which was consistent with the previous research (Liu et al.,
229	2012b). Interestingly, the lactic acid and formic acid were completely consumed at the
230	end of reaction.

231 Lactic acid was the initial product of anaerobic fermentation. In the metabolism232 of mixed bacteria, lactic acid was first produced through catalytic reduction of

233	pyruvate with lactate dehydrogenase. Afterwards, lactic acid was reduced to propionic
234	acid by propionate dehydrogenase (Lee et al., 2008). At 54 h, the contents of
235	propionic acid in the blank, AC and nZVI groups were 317.99 mg/L, 343.93 mg/L
236	and 310.28 mg/L, respectively. Due to promotion in lactic acid generation by AC, it's
237	the propionic acid reached the highest concentration at the end of the reaction. On the
238	other hands, ORP also affects fermentation products. The ORP of the blank, AC and
239	nZVI groups at the end of the reaction were -310 mV, -264 mV, and -335 mV,
240	respectively. Wang et al. (2006) reported that propionic acid was the main product at
241	ORP of -280 mV. As AC improved the ORP of the system, the production of
242	propionic acid was also increased. It was noteworthy that the proportion of propionic
243	acid dropped from 37.02% to 32.93% after adding nZVI. Since the fermentation
244	products in the anaerobic system were affected by ORP, the addition of nZVI to
245	reduce ORP may promote the conversion of propionic acid. Meng et al. (2013)
246	reported that the reduced ORP after adding ZVI can effectively increase the activity of
247	dehydrogenase, so the conversion rate of propionic acid increases from 43-77% to 67-
248	89%.
249	Formic and acetic acids are substrates that can be utilized by methanogens, and
250	formic acid is more easily used by methanogens than acetic acid in granular sludge
251	(Pan et al., 2016). The results showed that formic acid mainly accumulated in the

252 initial 9 h, while acetic acid was the dominant product at the end of the reaction. This

253 may be due to formic acid is not stable and is easily cracked into H_2 and CO_2 by

formate dehydrogenase (FDH) enzymes (Crable et al., 2011). Then H_2/CO_2 can be

converted into acetic acid as a substrate for homoacetogenic bacteria. As shown in
Fig. 1b, the H ₂ content in nZVI group was higher than that of AC and blank groups.
After adding nZVI, a large amount of H_2 was generated in the system. At 54 h, CO_2 in
the nZVI group was converted into acetic acid by reacting with H_2 , and only little CO_2
was remained in nZVI group. Therefore, the content of acetic acid in the nZVI group
was the highest at the end of the reaction. Obviously, it suggested that adding nZVI
significantly promoted the generation of VFAs. This was consistent with the previous
research results, which obtained the maximum VFAs content after adding 30 mM
nZVI (Zhou et al., 2020). At the end of reaction, the acidification rates in the blank,
AC and nZVI groups were 53.64%, 56.21% and 57.77%, respectively. Hence, adding
nZVI in AD could promoted the conversion of more organic matter into VFAs and
increase the substrates (H_2 , formic acid and acetic acid) for methanogens.
Fig. 1
Fig. 1 3.2 Effects of conductive materials on methane production in whole AD
 Fig. 1 3.2 Effects of conductive materials on methane production in whole AD Methane yield is an important indicator in reflecting the efficiency of AD. As
Fig. 1 3.2 Effects of conductive materials on methane production in whole AD Methane yield is an important indicator in reflecting the efficiency of AD. As shown in Fig. 2, the methane yield in AC added group was 241.18 mL CH ₄ /g COD,
Fig. 1 3.2 Effects of conductive materials on methane production in whole AD Methane yield is an important indicator in reflecting the efficiency of AD. As shown in Fig. 2, the methane yield in AC added group was 241.18 mL CH ₄ /g COD, which was lower than that of blank group of 250.11 mL CH ₄ /g COD. This result was
Fig. 1 <i>3.2 Effects of conductive materials on methane production in whole AD</i> Methane yield is an important indicator in reflecting the efficiency of AD. As shown in Fig. 2, the methane yield in AC added group was 241.18 mL CH ₄ /g COD, which was lower than that of blank group of 250.11 mL CH ₄ /g COD. This result was different from the previous research that adding GAC could promote methane yield in
Fig. 1 3.2 Effects of conductive materials on methane production in whole AD Methane yield is an important indicator in reflecting the efficiency of AD. As shown in Fig. 2, the methane yield in AC added group was 241.18 mL CH ₄ /g COD, which was lower than that of blank group of 250.11 mL CH ₄ /g COD. This result was different from the previous research that adding GAC could promote methane yield in methanogenesis by stimulating direct interspecies electron transfer (DIET) (Zhao et
Fig. 1 3.2 Effects of conductive materials on methane production in whole AD Methane yield is an important indicator in reflecting the efficiency of AD. As shown in Fig. 2, the methane yield in AC added group was 241.18 mL CH ₄ /g COD, which was lower than that of blank group of 250.11 mL CH ₄ /g COD. This result was different from the previous research that adding GAC could promote methane yield in methanogenesis by stimulating direct interspecies electron transfer (DIET) (Zhao et al., 2017). This probably resulted from that AC mainly promoted the production of
Fig. 1 <i>3.2 Effects of conductive materials on methane production in whole AD</i> Methane yield is an important indicator in reflecting the efficiency of AD. As shown in Fig. 2, the methane yield in AC added group was 241.18 mL CH ₄ /g COD, which was lower than that of blank group of 250.11 mL CH ₄ /g COD. This result was different from the previous research that adding GAC could promote methane yield in methanogenesis by stimulating direct interspecies electron transfer (DIET) (Zhao et al., 2017). This probably resulted from that AC mainly promoted the production of lactic and propionic acids in the acidogenic phase, while DIET was not formed to

277	Interestingly, the cumulative methane yield in nZVI added group was 309.89 mL
278	CH_4/g COD, which was significantly higher than that of the blank group. The
279	methane yield of nZVI added group increased by 23.9%, suggesting nZVI addition
280	could promote methane production. This could be mainly resulted from the following
281	three aspects. Firstly, nZVI created an environment conducive to the growth of
282	methanogens (Zhou et al., 2019). After the reaction, the pH value in nZVI group
283	(8.48) was higher than that of the AC group (6.87) and the blank group (6.88) (Table
284	1). The ORP value in nZVI group was -345 mV which was much lower than that of
285	AC (-197 mV) and blank group (-206 mV) (Table 1). Previous research also reported
286	that nZVI addition could lower the ORP value, providing a reductive condition (< -
287	200 mV) for methanogens (Liu et al., 2011). Secondly, Fe ²⁺ released by the corrosion
288	of nZVI under anaerobic conditions (Eq. (1)) was an important element of various
289	redox enzymes. Hence, adding nZVI could improve the metabolic activity of
290	microorganisms (Wang et al., 2016). Thirdly, adding nZVI increased the available
291	substrates for methanogens (Feng et al., 2014). More formic acid was produced in
292	acidogenic phase, which could be used as a substrate for H ₂ -utilzing methanogens. In
293	addition, the H_2 produced by nZVI corrosion of in the early stage could further
294	convert CO_2 into CH_4 (Eqs. (1), (2)). However, due to the high Gibbs free energy of
295	the process of releasing H_2 through the corrosion of nZVI (Daniels et al., 1987), it was
296	necessary for H ₂ -consuming microorganisms to continuously consume hydrogen to
297	pull the corrosion of nZVI and keep the hydrogen partial pressure at a low level.
298	Additionally, iron can be used as an extracellular electron donor to participate in the

299	electron transfer of microbial metabolism (Newman & Kolter., 2000). nZVI also can
300	be used as a direct electron donor for methanogens (Eq. (3)) to accelerate the
301	corrosion of nZVI for methane enhancement (Karri et al., 2005).
302	Fig. 2
303	Table 1
304	3.3 Microbial community analysis
305	3.3.1 Effects of conductive materials on microbial community in acidogenesis
306	The microbial community in acidogenesis process was investigated and shown in
307	Fig 3a-b. In phylum level (Fig. 3a), Firmicutes, Bacteroidetes and Chloroflexi
308	dominated in conductive materials added conditions. These three phyla were also
309	reported to be common hydrolysis fermentation bacteria in solid waste, wastewater
310	and sludge treated by AD (Zhang et al., 2018). In addition, they can convert organic
311	matter into VFAs, following acetic acid and H ₂ /CO ₂ generation. <i>Firmicutes</i> can
312	greatly promote the degradation of organic matter by proteases, cellulases and other
313	extracellular enzymes (Chen et al., 2017). Bacteroidetes is also a common hydrolysis
314	and fermentative bacteria in anaerobic systems, which can convert organic matter into
315	short-chain fatty acids (Chouari et al., 2005). Moreover, the bacteria in Chloroflexi
316	can degrade complex organic compounds (Roest et al., 2005). At 9 h, the total
317	abundance of the three bacterial phyla in the blank, AC and nZVI groups increased
318	from the original 60.26% to 77.94%, 83.72% and 81.52%, respectively, which were
319	consistent with the fermentation products. Correspondingly, AC added group obtained
320	the highest VFAs concentration, followed by nZVI and blank group. At 54 h, the

321	relative abundance of <i>Firmicutes</i> significantly increased in AC and nZVI groups with
322	44.35% and 43.70%, respectively. However, the Bacteroidetes decreased sharply in
323	the nZVI group (13.63%), and lower than the AC group (26.45%) and the blank group
324	(27.56%). The Chloroflexi decreased sharply in the AC group (10.85%) compared to
325	the blank (21.21%), while it was barely influenced by nZVI addition (20.68%).
326	The bacterial community is closely connected with the metabolites formation
327	(VFAs), which can further affect the methanogenesis process. At genus level (Fig.
328	3b), the dominant bacteria in the three groups were <i>Trichococcus</i> (phylum
329	<i>Firmicutes</i>), <i>norank_fBacteroidetes_vadinHA17</i> (phylum <i>Bacteroidetes</i>) and
330	norank_fAnaerolineaceae (phylum Chloroflexi)). Trichococcus is common acid-
331	producing bacteria, which mainly use glucose to produce lactic acid, formic acid,
332	acetic acid, and CO ₂ (Wang et al., 2018b). norank_f_Bacteroidetes_vadinHA17 is
333	reported to degrade glucose into acetic acid, propionic acid and H_2/CO_2 (Tan et al.,
334	2010; Ueki., 2006). Moreover, norank_fAnaerolineaceae can convert propionic
335	acid into acetic acid (Vrieze et al., 2015). At 9 h, Trichococcus increased significantly
336	compared with initial condition, which maybe resulted in the increase of lactic and
337	formic acids (Fig. 1a). Furthermore, it was obvious that AC and nZVI addition
338	enriched Trichococcus compared to the blank group, leading to the higher
339	concentrations of lactic and formic acids. As a material with strong adsorption, high
340	porosity and high surface area, AC is conducive to the adhesion of microorganisms
341	(Aziz et al., 2011). Whereas, the enrichment of Trichococcus in nZVI-added system
342	may be due to the buffered pH. Wang et al. (2018b) reported that Trichococcus was

343	common among neutral pH bacteria. In three groups, compared to 9 h, the relative
344	abundance of <i>Trichococcus</i> and <i>norank_f_Bacteroidetes_vadinHA17</i> decreased at 54
345	h due to the consumption of substrates. However, the relative abundance of
346	norank_fAnaerolineacea increased due to the production of propionic acid during
347	the reaction. The variation of VFAs was closely related to the microbial community.
348	At 54 h, it was showed that the content of lactic and formic acids decreased, while the
349	content of propionic and acetic acids increased significantly. Remarkably, nZVI
350	addition reduced the abundance of <i>norank_f_Bacteroidetes_vadinHA17</i> , while
351	enriched <i>norank_fAnaerolineacea</i> , which indicated that nZVI may promote the
352	conversion of propionic acid. nZVI rapidly reduced the ORP, and the released Fe ²⁺
353	could promote sludge flocculation to form particles. Moreover, most of the
354	norank_fAnaerolineacea are strictly anaerobic multicellular filamentous
355	microorganism. The flocculation of sludge can avoid destroying the structure of
356	bacterial filaments during the stirring process, which is more conducive to the growth
357	of norank_f_Anaerolineacea (Zhou et al., 2020). Therefore, at the end of the
358	acidogenesis, the acetic acid content in the nZVI group was the highest and the
359	propionic acid content was the least. Furthermore, it was worth noting that
360	Clostridium (phylum Firmicutes), increased from 0.34%, 0.43% and 0.13% at 9h to
361	1.45%, 2.05% and 0.42% at 54h in blank, AC and nZVI, respectively. As the most
362	common homoacetogen (Drake et al., 2006), the growth of Clostridium indicated that
363	H_2 and CO_2 were used as substrates by through homoacetogenesis to generate acetic
364	acid in the late stage of the reaction.

365	Fig. 3
366	3.3.2 Effects of conductive materials on the microbial community in whole AD
367	The relative abundances of methanogens at phylum and genus levels in each
368	group were shown in Fig. 3c-d. At phylum level (Fig. 3c), Euryarchaeota was the
369	main phyla in the blank, AC and nZVI groups (counting for 97.96%, 98.58% and
370	99.19%, respectively). At the genus level (Fig. 3d), Methanosaeta and
371	Methanobacterium dominated in three groups. Methanosaeta, the well-known acetate-
372	utilizing methanogens, accounted for 56.02% in nZVI group which was lower than
373	that in AC group (58.52%) and blank group (64.03%). As typical hydrogen-utilizing
374	methanogens, the abundances of Methanobacterium were 19.83%, 30.44% and
375	39.44% in the blank, AC and nZVI groups, respectively. Compared with blank, the
376	increase of relative abundance of Methanobacterium in AC group was resulted from
377	the enrichment of acid-producing bacteria to produce more H_2 in the early stage after
378	AC addition. Chen et al. (2014) reported that GAC could accelerate the syntrophic
379	conversion of VFAs to methane via DIET in defined co-cultures of G .
380	metallireducens and Methanosarcina barkeri as well as in some mixed cultures (Zhao
381	et al., 2015). However, the abundances of Methanosaeta and Methanosarcina in the
382	AC group decreased compared to the blank group, while the abundance of
383	Methanobacterium increased significantly. Thus, DIET was not formed to promote
384	methane production in this study. Therefore, AC did not show a promoting effect in
385	the whole AD process. Particularly, the significant increase of Methanobacterium in
386	the nZVI group may be due to the generation of hydrogen from nZVI addition (Fig.

387	2). Moreover, nZVI promoted the production of formic acid and the increase of H_2
388	content during acidogenic phase (Fig. 1), which supplied substrate for
389	Methanobacterium. Similarly, more methane generation in the nZVI group maybe
390	resulted from the higher abundance of Methanobacterium. In the nZVI group, the
391	content of H ₂ and formic acid significantly increased in the early stage, while the
392	accumulation of acetic acid occurred in the later stage of the acidogenesis. However,
393	H_2 and formic acid were thermodynamically easier to be used by methanogens than
394	acetic acid (Eqs. (4)-(6)). Therefore, the increase in H_2 and formic acid content in the
395	early stage provided a suitable substrate for hydrogenotrophic methanogens.
396	3.4 Characteristics of conductive materials and mechanism analysis on AD
397	3.4.1 Impacts of conductive materials on sludge characteristics
398	SEM observation showed that the interior and surface of the sludge in the three
399	groups were dominated by bacillus and cocci. The microorganisms in the blank group
400	were scattered on the surface of the sludge. Interestingly, a pore structure was formed
400 401	were scattered on the surface of the sludge. Interestingly, a pore structure was formed after the addition of AC, so bacillus and cocci were adsorbed on the inside and surface
400 401 402	were scattered on the surface of the sludge. Interestingly, a pore structure was formed after the addition of AC, so bacillus and cocci were adsorbed on the inside and surface of the sludge. Remarkably, the microorganisms in the nZVI group were tightly
400 401 402 403	were scattered on the surface of the sludge. Interestingly, a pore structure was formed after the addition of AC, so bacillus and cocci were adsorbed on the inside and surface of the sludge. Remarkably, the microorganisms in the nZVI group were tightly connected and wrapped. Zhang et al. (2011) reported that the cocci-shaped on the
400 401 402 403 404	were scattered on the surface of the sludge. Interestingly, a pore structure was formed after the addition of AC, so bacillus and cocci were adsorbed on the inside and surface of the sludge. Remarkably, the microorganisms in the nZVI group were tightly connected and wrapped. Zhang et al. (2011) reported that the cocci-shaped on the surface of sludge in ZVI packed reactor was related to the acidogens. Due to the
400 401 402 403 404 405	 were scattered on the surface of the sludge. Interestingly, a pore structure was formed after the addition of AC, so bacillus and cocci were adsorbed on the inside and surface of the sludge. Remarkably, the microorganisms in the nZVI group were tightly connected and wrapped. Zhang et al. (2011) reported that the cocci-shaped on the surface of sludge in ZVI packed reactor was related to the acidogens. Due to the electrostatic interaction and high specific surface area, nZVI was adsorbed on the cell
400 401 402 403 404 405 406	were scattered on the surface of the sludge. Interestingly, a pore structure was formed after the addition of AC, so bacillus and cocci were adsorbed on the inside and surface of the sludge. Remarkably, the microorganisms in the nZVI group were tightly connected and wrapped. Zhang et al. (2011) reported that the cocci-shaped on the surface of sludge in ZVI packed reactor was related to the acidogens. Due to the electrostatic interaction and high specific surface area, nZVI was adsorbed on the cell surface. Therefore, the elemental iron on the cell surface increased significantly after
400 401 402 403 404 405 406 407	were scattered on the surface of the sludge. Interestingly, a pore structure was formed after the addition of AC, so bacillus and cocci were adsorbed on the inside and surface of the sludge. Remarkably, the microorganisms in the nZVI group were tightly connected and wrapped. Zhang et al. (2011) reported that the cocci-shaped on the surface of sludge in ZVI packed reactor was related to the acidogens. Due to the electrostatic interaction and high specific surface area, nZVI was adsorbed on the cell surface. Therefore, the elemental iron on the cell surface increased significantly after nZVI addition. The released Fe ²⁺ might penetrate into the microbial cells and

409	3.4.2 The relationship between bacteria and environmental variables
410	Redundancy analysis (RDA) was carried out to explore the correlation between 6
411	environmental factors and the 3 main bacterial communities (Trichococcus,
412	norank_fBacteroidetes_vadinHA17 and norank_fAnaerolineaceae) in the
413	acidogenesis process. As shown in Fig. 4, the distribution of the samples changed
414	significantly, and the 7 samples were well separated in groups. The original sample
415	was separated from the blank, AC and nZVI groups. The results showed that great
416	difference occurred between different groups. Obviously, lactic acid and formic acid
417	were clustered closely, and acetic acid and propionic acid were also positively
418	correlated. This confirmed the accumulation of lactic acid and formic acid in the early
419	stage of acidogenesis, while the accumulation of acetic acid and propionic acid in the
420	later stage. In addition, pH and VFAs (lactic acid, formic acid) showed a strong
421	negative correlation, indicating that the accumulation of lactic acid and formic acid in
422	the early stage of acidogenesis rapidly reduced the pH. Lactic acid showed a strong
423	positive correlation in the AC group (Fig. 4), indicating that AC had a significant
424	promoting effect on lactic acid. Remarkably, the two groups with nZVI added were
425	positively correlated with VFAs. These proved that conductive materials play a
426	leading role in promoting the hydrolysis and acidogenesis of organics. In addition,
427	RDA results can also reveal the distribution of microbial communities. <i>Trichococcus</i>
428	was positively correlated with formic acid, acetic acid and H_2 . At 9 h, compared with
429	the original sludge, the abundance of Trichococcus in the three systems all increased
430	significantly, so the content of fermentation products also increased accordingly. As

431	expected, <i>norank_fAnaerolineaceae</i> showed a positive correlation with acetic acid.
432	Conversely, <i>norank_fBacteroidetes_vadinHA17</i> did not have a positive correlation
433	with propionic acid. It was speculated that the conversion of VFAs was not only
434	related to the abundance of microorganisms, but also related to the metabolic activity
435	of microorganisms. In addition, AC was located near the Trichococcus and
436	norank_f_Bacteroidetes_vadinHA17, indicating that AC had a positive effect on
437	thier growth. Furthermore, Trichococcus and norank_f_Anaerolineaceae were
438	distributed closely to nZVI, indicating that adding nZVI was beneficial to their
439	growth. The RDA analysis showed that the bacterial communities were affected by
440	AC and nZVI which explains the different performance in the AC and nZVI groups.
441	Fig. 4
442	3.4.3 Mechanism analysis of conductive materials on AD
443	In the acidogenesis period, AC promoted the production of lactic and propionic
444	acids, while nZVI promoted the production of formic and acetic acids. In order to
445	reveal the promotion mechanism of AC and nZVI, based on the function prediction
446	
	analysis, the related functional enzyme-encoding gene in the blank, AC and nZVI
447	analysis, the related functional enzyme-encoding gene in the blank, AC and nZVI groups were analyzed. As shown in Fig. 5, the addition of materials enhanced the
447 448	analysis, the related functional enzyme-encoding gene in the blank, AC and nZVI groups were analyzed. As shown in Fig. 5, the addition of materials enhanced the activity of key enzymes compared to the blank group. The abundance of encoding
447 448 449	analysis, the related functional enzyme-encoding gene in the blank, AC and nZVI groups were analyzed. As shown in Fig. 5, the addition of materials enhanced the activity of key enzymes compared to the blank group. The abundance of encoding genes of lactate dehydrogenase, propionate CoA-transferase, butyryl-CoA
447 448 449 450	analysis, the related functional enzyme-encoding gene in the blank, AC and nZVI groups were analyzed. As shown in Fig. 5, the addition of materials enhanced the activity of key enzymes compared to the blank group. The abundance of encoding genes of lactate dehydrogenase, propionate CoA-transferase, butyryl-CoA dehydrogenase and propionyl-CoA synthetase related to lactic and propionic acids
447 448 449 450 451	analysis, the related functional enzyme-encoding gene in the blank, AC and nZVI groups were analyzed. As shown in Fig. 5, the addition of materials enhanced the activity of key enzymes compared to the blank group. The abundance of encoding genes of lactate dehydrogenase, propionate CoA-transferase, butyryl-CoA dehydrogenase and propionyl-CoA synthetase related to lactic and propionic acids increased in the AC group, indicating that AC promoted the production of lactic and

453	bacteria were enriched in the anaerobic system. Hence, the lactic acid content in the
454	AC group was the highest (Fig. 1a). Subsequently, as an intermediate product in the
455	process of reducing pyruvic acid to propionic acid, lactic acid was consumed by
456	producing propionic acid. The conversion from pyruvate to lactic and propionic acids
457	requires the consumption of NADH. It was reported that ORP can influent
458	intracellular NADH/NAD ⁺ ratio, which in turn affect enzyme activity and metabolites
459	(Liu et al., 2013). Tian et al. (2015) reported that when ORP was -250 mV, the highest
460	NADH appeared in the system. At the end of the reaction, the ORP value in the AC
461	group was -264 mV, so AC appropriately increased the ORP value of the system and
462	promoted the production of NADH. Therefore, the activity of the enzyme was
463	enhanced.
464	In addition, the products of concern were formic acid, acetic acid and H_2/CO_2 ,
465	which were substrates available for methanogens. In the absence of oxygen, pyruvate
466	can be catalyzed by pyruvate-ferredoxin oxidoreductase (POR) to acetyl-CoA and
467	CO ₂ , or by pyruvate formate-lyase (PFL) to formate and acetyl-CoA (Knappe et al.,
468	1974). In the initial 9 h, formic acid in the three groups accumulated to the maximum
469	value. At this time, the prediction of functional enzyme-encoding genes showed that
470	the abundance of PFL-encoding genes in the three groups increased significantly
471	compared to original sludge. The blank, AC and nZVI groups increased by 0.49-fold,
472	1.74-fold, and 1.94-fold, respectively. Due to nZVI decreased ORP, it provided a
473	favorable environment for the growth of acid-producing bacteria (Luo et al.,2014). On
474	the other hand, mainly enzymes contain iron-sulfur reducing clusters, the Fe ²⁺

475	released after the addition of nZVI could greatly increase the activity of the enzyme
476	(Yang & Wang, 2018). Also, it was reported that the optimum pH for PFL was 7.0
477	(Pecher et al., 1982). Therefore, nZVI buffered the pH of the system and provided a
478	more suitable condition for the expression of PFL. Consistently, the formic acid
479	production in the nZVI group was the highest (Fig. 1a). Whereas, when
480	methanogenesis was inhibited, formic acid can be cleaved into H_2/CO_2 by formate
481	dehydrogenase, and H_2/CO_2 can be converted into acetic acid via the Wood-
482	Ljungdahl pathway. At 54 h, the abundance of genes encoding formate dehydrogenase
483	and metheyltransferase increased slightly compared to 9 h, while other enzyme-
484	encoding genes have declined. Therefore, the results showed that in batch systems,
485	formic acid was mainly produced in the early stage, and acetic acid was generated in
486	the later stage of acidogenesis. The addition of nZVI could release more H_2 , and the
487	increase of H_2 accelerated the consumption of CO_2 and promoted the homoacetogenic
488	process. Therefore, at the end of the reaction, CO_2 was completely consumed in the
489	nZVI group, and the acetic acid was higher than that of the other two groups.
490	From the perspective of the methanogenesis process, nZVI had a significant
491	promoting effect on the production of methane. The substrates produced in the
492	acidogenic phase that can be utilized by methanogens were mainly acetic acid, formic
493	acid and H_2/CO_2 , which are mainly involved two methanogenic pathways, including
494	acetoclastic and hydrogenotrophic pathways. Obviously, 5-methyl-THMPT is a
495	common intermediate for two methanogenesis pathways, catalyzed by acetyl-CoA
496	decarbonylase during acetate-dependent methanogenesis and 5,10-

497	methylenetetrahydromethanopterin reductase during CO ₂ -dependent methanogenesis
498	(Wang et al., 2018a). In the process of acetoclastic methanogenesis, acetic acid is
499	finally converted into CH_4 and CO_2 by the action of various enzymes such as acetyl-
500	CoA decarbonylase, tetrahydromethanopterin S-methyltransferase and methyl-
501	coenzyme M reductase. In the hydrogenotrophic methanogenesis, H_2/CO_2 or formic
502	acid requires multiple steps to be converted into methane. CO ₂ is gradually converted
503	into formyl, methylene and methyl groups under the action of various enzymes, and
504	then into methane (Guo et al., 2015). Moreover, the formic acid produced in the
505	acidogenic stage can also be used as a substrate for methanogens, but free formic acid
506	cannot be directly used by methanogens. Formic acid is first oxidized to CO ₂ by FDH,
507	and accompanied by the production of $F_{420}H_2$, and then converted into methane
508	through the CO_2 reduction pathway (Crable et al., 2011). As shown in Fig. 5, after the
509	addition of nZVI, encoding gene of the FDH that catalyzed the conversion of formic
510	acid oxidation and CO_2 reduction had a higher abundance. Also, the abundances of
511	the encoding genes of functional enzymes for the hydrogenotrophic pathway was
512	richer than acetoclastic pathway. It indicated that nZVI promoted the production of
513	formic acid in the acidogenic phase, which could provide a rich substrate for
514	hydrogen-utilizing methanogens. The addition of nZVI greatly enhanced the
515	hydrogenotrophic pathway, and the hydrogen in the system may be produced by the
516	chemical corrosion of the nZVI or produced in acidogenesis process, which was
517	consistent with the results of Feng et al. (2014). Besides, nZVI can be used as a direct
518	electron donor to reduce CO ₂ to methane.

Fig. 5

4. Conclusions

521	The present study systematically investigated the effect of AC and nZVI addition							
522	on acidogenesis and whole anaerobic digestion process. AC enriched the							
523	<i>Trichococcus</i> and <i>norank_fBacteroidetes_vadinHA17</i> by its pore structure,							
524	indicating that AC promoted the production of lactic and propionic acids in							
525	acidogenic phase. nZVI significantly improved the activity of functional enzymes by							
526	buffering pH and releasing Fe ²⁺ , thereby increased the production of formic acid in							
527	acidogenic phase. In addition, nZVI enriched the hydrogenotrophic methanogens in							
528	whole AD for higher CH ₄ yield. Thus, adding nZVI is a promising strategy to increase							
529	both acidogenesis and whole AD process for higher efficiency.							
530	Acknowledgements							
531	This work was supported by the National Natural Science Foundation of China							
532	(grant numbers: 51678553, 21876167 and 52070176) and the National Key Research							
533	and Development Program of China (grant number: 2017YFD0800804-03).							
534	References							
535	1. APHA, 2012. Standard Methods for the Examination of Water and Wastewater,							
536	22th ed. American Public Health Association, Washington, DC, USA.							
537	2. Appels, L., Lauwers, J., Degreve, J., Helsen, L., Lievens, B., Willems, K., Van							
538	Impe, J.V., Dewil, R., 2011. Anaerobic digestion in global bio-energy production:							
539	potential and research challenges. Renew. Sust. Energ. Rev. 15(9), 4295-4301.							
540	3. Aziz, S.Q., Aziz, H.A., Yusoff, M.S., Bashir, M.J., 2011. Landfill leachate							

Journal Pre	e-proofs	

treatment using powdered activated carbon augmented sequencing batch reactor

- 542 (SBR) process: optimization by response surface methodology. J. Hazard. Mater.
- 543 189(1-2), 404-413.

541

- 544 4. Chen, S.S., Rotaru, A.E., Liu, F.H., Philips, J., Woodard, T.L., Nevin, K.P.,
- 545 Lovley, D.R., 2014. Carbon cloth stimulates direct interspecies electron transfer

546 in syntrophic cocultures. Bioresour. Technol. 173, 82-86.

547 5. Chen, Y., Jiang, X., Xiao, K.K., Shen, N., Zeng, R.J., Zhou, Y., 2017. Enhanced

548 volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise

- 549 pH increase Investigation on dissolved organic matter transformation and
- 550 microbial community shift. Water Res. 112, 261-268.
- 551 6. Chouari, R., Le Paslier, D., Daegelen, P., Ginestet, P., Weissenbach, J., Sghir, A.,
- 552 2005. Novel predominant archaeal and bacterial groups revealed by molecular
- analysis of an anaerobic sludge digester. Environ. Microbiol. 7(8), 1104-1115.
- 554 7. Crable, B.R., Plugge, C.M., McInerney, M.J., Stams, A.J., 2011. Formate
- 555 formation and formate conversion in biological fuels production. Enzyme Res.
- 556 2011, 532536.
- 557 8. Dang, Y., Holmes, D.E., Zhao, Z.Q., Woodard, T.L., Zhang, Y.B., Sun, D.Z.,
- Wang, L.Y., Nevin, K.P., Lovley, D.R., 2016. Enhancing anaerobic digestion of
 complex organic waste with carbon-based conductive materials. Bioresour.
- 560 Technol. 220, 516-522.
- 561 9. Daniels, L., Belay, N., Rajagopal, B.S., Weimer, P.J., 1987. Bacterial
- 562 Methanogenesis and Growth from CO₂ with Elemental Iron as the Sole Source of

- 563 Electrons. Science 237(4814), 509-511.
- 564 10. Drake, H.L., Gößner, A.S., Daniel, S.L., 2008. Old acetogens, New light. Ann N
 565 Y Acad Sci, 1125(1):100-128.
- 566 11. Feng, Y.H., Zhang, Y.B., Quan, X., Chen, S., 2014. Enhanced anaerobic digestion
- of waste activated sludge digestion by the addition of zero valent iron. Water Res.
 568 52, 242–250.
- 569 12. Guo, J.H., Peng, Y.Z., Ni, B.J., Han, X.Y., Fan, L., Yuan, Z.G., 2015. Dissecting
- 570 microbial community structure and methane-producing pathways of a full-scale
- 571 anaerobic reactor digesting activated sludge from wastewater treatment by
- 572 metagenomic sequencing. Microb. Cell Fact. 14, 33.
- 573 13. Hao, X.D., Wei, J., Loosdrecht, M.C.M.V., Cao, D.Q., 2017. Analysing the
- 574 mechanisms of sludge digestion enhanced by iron. Water Res. 117, 58-67.
- 575 14. Jin, Y., Gao, M., Li, H.G., Lin, Y.J., Wang, Q.H., Tu, M.B., Ma, H.Z., 2019.
- 576 Impact of nanoscale zerovalent iron on volatile fatty acid production from food
- 577 waste: key enzymes and microbial community. J. Chem. Technol. Biot. 94(10),
- 578 3201-3207.
- 579 15. Karri, S., Sierra-Alvarez, R., Field, J.A., 2005. Zero valent iron as an electron580 donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnol.
 581 Bioeng. 92(7), 810-819.
- 582 16. Knappe, J., Blaschkowski, H.P., Gröbner, P., Schmitt, T., 1974. Pyruvate
- 583 formate-lyase of *Escherichia coli*: the acetyl-enzyme intermediate. Eur. J.
- 584 Biochem. 50(1), 253-263.

585	17.	Langille, M.G.I., Jesse, Z., J Gregory, C., Daniel, M.D., Dan, K., Reyes, J.A.,
586		Clemente, J.C., Burkepile, D.E., Thurber, R.L., Vega, Rob, K., 2013. Predictive
587		functional profiling of microbial communities using 16S rRNA marker gene
588		sequences. Nat. Biotechnol. 31, 814–821.
589	18.	Lee, H.S., Salerno, M.B., Rittmann, B.E., 2008. Thermodynamic evaluation on
590		H_2 production in glucose fermentation. Environ. Sci. Technol. 42(7), 2401-2407.
591	19.	Li, Y., Chen, Y.G., Wu, J., 2019. Enhancement of methane production in
592		anaerobic digestion process: A review. Appl. Energy 240, 120-137.
593	20.	Lim, E.Y., Tian, H.L., Chen, Y.Y., Ni, K.W., Zhang, J.X., Tong, Y.W., 2020.
594		Methanogenic pathway and microbial succession during start-up and stabilization
595		of thermophilic food waste anaerobic digestion with biochar. Bioresour. Technol.
596		314, 123751.
597	21.	Liu, C.G., Xue, C., Lin, Y.H., Bai, F.W., 2013. Redox potential control and
598		applications in microaerobic and anaerobic fermentations. Biotechnology Adv.
599		31(2), 257-265.
600	22.	Liu, F.H., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Nevin, K.P., Lovley,

- 601 D.R., 2012a. Promoting direct interspecies electron transfer with activated
 602 carbon. Energy Environ. Sci. 5(10), 8982.
- 603 23. Liu, Y.W., Zhang, Y.B., Quan, X., Chen, S., Zhao, H.M., 2011. Applying an
- electric field in a built-in zero valent iron-anaerobic reactor for enhancement of
 sludge granulation. Water Res. 45(3), 1258-1266.
- 606 24. Liu, Y.W., Zhang, Y.B., Zhao, Z.Q., Li, Y., Quan, X., Chen, S., 2012b. Enhanced

- azo dye wastewater treatment in a two-stage anaerobic system with Fe^0 dosing.
- 608 Bioresour. Technol. 121, 148-153.
- 609 25. Lu, L., Xing, D.F., Liu, B.F., Ren, N.Q., 2012. Enhanced hydrogen production
- 610 from waste activated sludge by cascade utilization of organic matter in microbial
- 611 electrolysis cells. Water Res. 46 (4), 1015-1026.
- 612 26. Luo, J.Y., Feng, L.Y., Chen, Y.G., Li, X., Chen, H., Xiao, N.D., Wang, D.B.,
- 613 2014. Stimulating shortchain fatty acids production from waste activated sludge614 by nano zero-valent iron. J. Biotechnol. 187, 98-105.
- 615 27. Meng, X.S., Zhang, Y.B., Li, Q., Quan, X. 2013., Adding Fe⁰ powder to enhance
- 616 the anaerobic conversion of propionate to acetate. Biochem. Eng. J. 73, 80-85.
- 617 28. Newman, D.K., Kolter, R., 2000. A role for excreted quinones in extracellular
 618 electron transfer. Nature 405, 94-97.
- 619 29. Pan, X.F., Angelidaki, I., Alvarado-Morales, M., Liu, H.G., Liu, Y.H., Huang, X.,
- 620 Zhu, G.F, 2016. Methane production from formate, acetate and H_2/CO_2 ; focusing
- on kinetics and microbial characterization. Bioresour. Technol. 218, 796-806.
- 622 30. Pan, X.F., Lv, N., Li, C.X., Ning, J., Wang, T., Wang, R.M., Zhou, M.D., Zhu,
- 623 G.F., 2019. Impact of nano zero valent iron on tetracycline degradation and
 624 microbial community succession during anaerobic digestion. Chem. Eng. J. 359,
 625 662-671.
- 626 31. Pecher, A., Blaschkowski, H.P., Knappe, K., Böck. A., 1982. Expression of
- 627 pyruvate formate-lyase of *Escherichia coli* from the cloned structural gene. Arch.
- 628 Microbiol. 132, 365–371.

629	32.	Roest, K., Heilig, H.G.H.J., Smidt, H., Vos, W.M.D., Stams, A.J.M., Akkermans,
630		A.D.L., 2005. Community analysis of a full-scale anaerobic bioreactor treating
631		paper mill wastewater. Syst. Appl. Microbiol. 28(2), 175-185.
632	33.	Su, L.H., Shi, X.L., Guo, G.Z., Zhao, A.H., Zhao, Y.C., 2013. Stabilization of
633		sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of
634		odor and improvement of biogas production. J. Mater. Cycles Waste 15, 461-468.
635	34.	Tan, R., Miyanaga, K., Toyama, K., Uy, D., Tanji, Y., 2010. Changes in
636		composition and microbial communities in excess sludge after heat-alkaline
637		treatment and acclimation. Biochem. Eng. J. 52(2-3), 151-159.
638	35.	Tian, X.W., Zhang, N., Yang, Y., Wang, Y.H., Chu, J., Zhuang, Y.P., Zhang,
639		S.L., 2015. The effect of redox environment on L-lactic acid production by
640		Lactobacillus paracasei-A proof by genetically encoded in vivo NADH
641		biosensor. Process Biochem. 50(12), 2029-2034.
642	36.	Ueki, A., Akasaka, H., Suzuki, D., Ueki, K., 2006. Paludibacter propionicigenes
643		gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-
644		producing bacterium isolated from plant residue in irrigated roce-field soil in
645		Japan. Int. J. Syst. Evol. Micr. 56(1), 39-44.
646	37.	Vrieze, J.D., Gildemyn, S., Vilchez-Vargas, R., Jáuregui, R., Pieper, D.H.,
647		Verstraete, W., Boon, N., 2015. Inoculum selection is crucial to ensure
648		operational stability in anaerobic digestion. Appl. Environ. Microbiol. 99:189-99.
649	38.	Wang, L., Zhou, Q., Li, F.T. 2006. Avoiding propionic acid accumulation in the
650		anaerobic process for biohydrogen production. Biomass Bioenergy 30(2), 177-

651 182.

652	39.	Wang, T., Zhang, D., Dai, L.L., Chen, Y.G., Dai, X.H., 2016. Effects of Metal
653		Nanoparticles on Methane Production from Waste-Activated Sludge and
654		Microorganism Community Shift in Anaerobic Granular Sludge. Sci. Rep. 6,
655		25857.
656	40.	Wang, T., Zhang, D., Dai, L.L., Dong, B., Dai, X.H., 2018a. Magnetite
657		Triggering Enhanced Direct Interspecies Electron Transfer: A Scavenger for the
658		Blockage of Electron Transfer in Anaerobic Digestion of High-Solids Sewage
659		Sludge. Environ Sci Technol, 52(12), 7160-7169.
660	41.	Wang, Z.Z., Yin, Q.D., Gu, M.Q., He, K., Wu, G.X., 2018b. Enhanced azo dye
661		reactive red 2 degradation in anaerobic reactors by dosing conductive material of
662		ferroferric oxide. J. Hazard. Mater. 357, 226-234.
663	42.	Xie, J., Chen, Y.Z., Duan, X., Feng, L.Y., Yan, Y.Y., Wang, F., Zhang, X.Z.,
664		Zhang, Z.G., Zhou, Q., 2019. Activated carbon promotes short-chain fatty acids
665		production from algae during anaerobic fermentation. Sci. Total Environ. 658,
666		1131-1138.
667	43.	Yang, G., Wang, J., 2018. Various additives for improving dark fermentative
668		hydrogen production: A review. Renew. Sust. Energ. Rev. 95, 130-146.
669	44.	Zhang, Y.B., An, X.L., Quan, X., 2011. Enhancement of sludge granulation in a
670		zero valence iron packed anaerobic reactor with a hydraulic circulation. Process
671		Biochem. 46(2), 568 471-476.

672 45. Zhang, Z.H., Gao, P., Cheng, J.Q., Liu, G.H., Zhang, X.Q., Feng, Y.J., 2018.

673	Enhancing anaerobic digestion and methane production of tetracycline
674	wastewater in EGSB reactor with GAC/NZVI mediator. Water Res. 136, 54-63.
675	46. Zhao, Z.Q, Li, Y., Quan, X., Zhang, Y.B., 2017. Towards engineering
676	application: Potential mechanism for enhancing anaerobic digestion of complex
677	organic waste with different types of conductive materials. Water Res. 115, 266-
678	277.
679	47. Zhao, Z.Q., Zhang, Y.B., Woodard, T.L., Nevin, K.P., Lovley, D.R., 2015.
680	Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors
681	with conductive carbon materials. Bioresour. Technol. 191, 140-145.
682	48. Zhou, J., You, X.G., Jia, T.T., Niu, B.W., Gong, L., Yang, X.Q., Zhou, Y., 2019.
683	Effect of nanoscale zero-valent iron on the change of sludge anaerobic digestion
684	process. Environ. Technol. 41(24), 3199-3209.
685	49. Zhou, J., You, X.G., Niu, B.W., Yang, X.Q., Gong, L., Zhou, Y., Wang, J.,
686	Zhang, H.N., 2020. Enhancement of methanogenic activity in anaerobic digestion
687	of high solids sludge by nano zero-valent iron. Sci. Total Environ. 703, 135532.
688	Credit Author Statement
689	Ruming Wang: Conceptualization, Methodology, Formal analysis, Investigation, Data
690	curation, Writing-original Draft. Chunxing Li: Resources, Formal analysis, Validation,
691	Writing-review & editing. Nan Lv: Supervision, Validation. Xiaofang Pan: Resources,
692	Funding acquisition, Supervision. Guanjing Cai: Reviewing and Editing. Jing Ning:
693	Supervision, Formal analysis. Gefu Zhu: Project administration, Funding acquisition,
694	Supervision.

	Journal Pre-proofs
695	
696	50.
697	Declaration of interests
698	
699	\boxtimes The authors declare that they have no known competing financial interests or personal
700	relationships that could have appeared to influence the work reported in this paper.
701	
702	□The authors declare the following financial interests/personal relationships which

703 may be considered as potential competing interests:

704	
705	
706	
707	
708	
709	51.

Role of AC Role of nZVI **Conductive materials** ORP ORP 🕇 nZVI Trichococc рH Trichococcus Enzymes involving in Fe² formate production Enzymes involving in lactate and propionate production Formic acid H, Lactic acid 2-BES СН4 hydrogenotrophic **Batch** digesti homoacetogenic **CH**₄ Propionic acid Acetic acid 710 711 52.

- 712 Figure Captions
- **Fig. 1** Variation in VFAs (a), gas content (b) and pH (c) during the acidogenesis.
- **Fig. 2** Methane yield in blank, AC and nZVI added groups.
- **Fig. 3** The distribution of bacterial communities at phylum level (a) and genus level
- 716 (b) in acidogenesis, and the comparison of archaea community structures of three
- 717 groups at phylum level (c) and genus level (d) in whole AD.
- 718 Fig.4 The connection between different samples, bacterial communities and
- 719 environmental factors.
- 720 Fig. 5 The abundance variations of relevant functional enzyme-encoding genes
- involved in the pyruvate metabolism between acidogens and methanogens at three
- 722 groups.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Table 1 The performance of batch reactors under different conditions after t					the whole AD		
				COD	removal	Cumulative CH ₄	CH ₄ yield (NmL
	Batch	рН	ORP(mV)	efficien	ncies (%)	production (NmL)	CH ₄ /g COD)
	Blank	6.88	-206.00	95	5.48%	23.88	250.11
	AC	6.87	-197.00	96	5.89%	23.37	241.18
	nZVI	8.48	-345.00	95.89%		29.72	309.89
738							
739							
740	54.						
741	Highli	ghts					
742	1. Both AC and nZVI increased the production of VFAs in acidogenesis.						
743	2. nZVI strengthened the formation of formic and acetic acids in acidogenesis.						
744	3. nZVI is superior to AC on the enhancement of methane in whole AD.						
745	4. Methanobacterium was selectively enriched with nZVI addition.						
746	5. Mechanism of AC and nZVI on acidogenesis and whole AD was analyzed and						
747	com	pared.					
748							
749	55.						