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A B S T R A C T   

Urban form, especially urban functional form, is an important consideration for urban planning, construction, 
and management. Recent progress in characterizing urban functional form makes it possible to quantify the 
relationship between urban functional form and urban carbon emissions. We used urban functional form data 
from 178 cities of China to study the relationship between urban CO2 emissions and five categories of urban 
form: compactness, extension, fragmentation, irregularity, and concentration. The results show that all five 
categories significantly affect the total CO2 emissions (TCE), and four categories (excluding fragmentation) 
significantly affect per-capita CO2 emissions (PCE). Compactness produces a significant negative effect on both 
TCE and PCE: for every 1% increase in the functional compactness index (FCI), TCE and PCE decrease by 0.79% 
and 0.34%, respectively. Carbon-emission-reduction policies should be combined with the topographical envi-
ronment, spatial structure, and industrial structure of cities. FCI reduces carbon emissions most effectively in 
plain and single-center cities. The planning and control of forms are more important in hilly and mountainous 
cities, multi-center cities, and highly industrial cities. This study concludes that the adjustment of urban func-
tional form has important theoretical and practical significance for low-carbon city development.   

1. Introduction 

Climate change caused by global warming poses tremendous chal-
lenges to the sustainable development of human society. It triggers 
numerous environmental issues such as urban heat islands, rising sea 
levels, frequent extreme weather events, plant and animal reduction, 
etc. (Clark et al., 2016; Smith et al., 2015; Tollefson, 2021). The 
cumulation of carbon dioxide (CO2) emissions is the primary culprit for 
global warming (Hansen and Lebedeff, 1987). Cities, as the fastest 
growing human habitats on Earth, contribute over 70% of global CO2 
emissions (GEA, 2012; IEA, 2012; Kennedy et al., 2014; Wang et al., 
2019a). Reducing CO2 emissions, especially in cities, is essential for the 
sustainable development of cities and of human society (Khanna et al., 
2014; Rosenzweig et al., 2010; Zhang et al., 2014). 

Widely known methods to reduce carbon emissions include adjusting 
energy structure, developing non-fossil energy, inventing negative- 
emission technology, setting up low-carbon pilot cities, and establish-
ing green markets (Liu et al., 2021b). It is noteworthy that the rela-
tionship between urban form and CO2 emissions has received increasing 
attention (Cai et al., 2021; Fang et al., 2015; Li et al., 2022; Wang et al., 

2019a). 
A growing number of studies show that urban form strongly affects 

the level of CO2 emissions (Liu et al., 2014, 2020; Makido et al., 2012; 
Zuo et al., 2022). For example, Wang et al. (2017) analyzed how so-
cioeconomic factors, urban form, and transportation networks affect 
CO2 emissions in China’s megacities and reported that fragmentation 
and irregularity of urban form increase CO2 emissions. Ou et al. (2013) 
examined the relationship between carbon emissions and urban form 
from 1990 to 2010 by taking the four fastest-growing Chinese cities 
(Beijing, Shanghai, Tianjin, and Guangzhou) as examples and found that 
the increase of urban area increases CO2 emissions, as does land frag-
mentation and irregularity. Fang et al. (2015) studied the relationship 
between urban form and CO2 emissions of 30 provincial capital cities in 
China and drew similar conclusions. Bereitschaft and Debbage (2013) 
reported that, when population, land area, and climate were controlled, 
greater urban sprawl in U.S. metropolitan areas was associated with 
greater air pollution and CO2 emissions. In a study of European cities, 
researchers found that high urban patch fragmentation and dense urban 
patches correlated with low greenhouse gas emissions (Baur et al., 
2015). Cirilli and Veneri (2013) explored the relationship between the 
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spatial structure of 111 urban areas in Italy and the CO2 emissions 
generated by commuting and found that the smaller, more compact 
cities with fewer urban centers produced less CO2 emissions per resident 
from commuting. Wang et al. (2018a) studied how urban form affects 
CO2 emission in the Pearl River Delta, China, and found that urban 
compactness significantly reduces CO2 emission efficiency and that 
compact urban form can effectively improve CO2 emission efficiency. 
However, opposing views argue that urban form plays only a small role 
in reducing CO2 emissions (Gaigne et al., 2010). 

As mentioned above, researchers have investigated the relationship 
between urban form and CO2 emissions in different countries and re-
gions, and the most common metrics of urban form are size, expansion, 
complexity, irregularity, and urban compactness (Guo et al., 2022; Shi 
et al., 2020; Wang et al., 2018a). In previous studies, the term “urban 
form” mainly refers to the urban physical form, i.e., the physical char-
acteristics of the built-up areas, including the shape, size, expansion, and 
configuration of urban areas (Thinh et al., 2002; Williams, 2014). 
However, given that cities are giant, complex systems, urban functional 
form is also an important aspect of urban form (Thinh et al., 2002) and 
may also play a key role in achieving low-carbon cities (Cao et al., 2022; 
Wang et al., 2018b). Urban functional form is the functional charac-
teristics that make up the configuration of urban areas and consists of 
the interaction between the internal order of the city and the external 
environment (Lan et al., 2021). The difficulty of acquiring data on urban 
functional attributes over a large scale has led to a lack of research on the 
relationship between the urban functional form and CO2 emissions. 
Therefore, based on existing research, we explore herein the relationship 
between urban and CO2 emissions in multiple categories by considering 
urban functional form as an important indicator of urban compactness. 
The scientific questions addressed herein are (i) how do different cate-
gories of urban form, especially urban functional form, relate to CO2 
emissions? (ii) Which category of urban form is more conducive to 
reducing carbon emissions? (iii) How strongly does urban form 
contribute to low-carbon cities? 

2. Study area 

China is a vast country with diverse and complex urban types (Jiao 
et al., 2020), forming a rich environment in which to explore the rela-
tionship between urban form and CO2 emissions in multiple categories 
(Liu et al., 2021b; Yao et al., 2021). This work considers 178 case cities 
(Fig. 1) that all have a certain urban scale and an urban permanent 
resident population of over 400 000, where the population data were 

obtained from the China Construction Statistical Yearbook. The case cities 
are of different sizes: five megacities (urban permanent resident popu-
lation >10 million), nine extra-large cities (urban permanent resident 
population of 5–10 million), 78 large cities (urban permanent resident 
population of 1–5 million), 60 medium cities (urban permanent resident 
population between 0.5 and 1.0 million), and 26 small cities (urban 
permanent resident population less than 0.5 million). Additionally, the 
case cities have different administrative levels: four municipalities are 
directly controlled by the central government, five cities are specifically 
designated in the state plan, 26 cities are provincial capitals, and 143 
cities are prefecture-level cities. In terms of population, the national 
urban population is 409 757 200, and the total urban permanent resi-
dent population of the 178 case cities is 297 576 700, which is 73% of 
the national urban population. Thus, the results of this study are 
representative of the relationship between urban form and carbon 
emissions in these 178 cities. 

3. Materials and methods 

3.1. CO2 emission data 

There are two broad approaches to estimating CO2 emissions, the 
first method is based on the inventory factor proposed by the Inter-
governmental Panel on Climate Change (Fang et al., 2015), but this 
method only provides CO2 emission data on the administrative scale as 
opposed to a finer spatial scale. The second method is to invert CO2 
emissions by combining nighttime-light remote-sensing data (Liu et al., 
2018). The CO2 emissions data used herein comes from the Open-Data 
Inventory for Anthropogenic CO2 (ODIAC), which provides 
high-spatial resolution (1 km ✕ 1 km) gridded global data on CO2 
emissions from fossil fuel combustion (Oda and Maksyutov, 2011). 
ODIAC data are calculated by combining multi-source nighttime light-
ing data with the global point source carbon emissions database and ship 
and aircraft tracks. It has been widely used in many studies, such as for 
estimating urban emissions and monitoring system-design experiments 
(Oda et al., 2018; Shi et al., 2020). Studies have shown that these data 
accurately allocate CO2 emissions on global, regional, national, and city 
scales. ODIAC has several versions, and we use herein the sum of the 12 
months in 2019 of carbon emissions data as the annual total CO2 
emissions (TCE) for 2019, which is provided by the ODIAC 2020 data 
product. The TCE for each city is obtained from the sum of CO2 emis-
sions within the urban area in this paper. 

The intensity of CO2 emissions is usually expressed in three ways: per 
capita CO2 emissions (PCE), per unit area CO2 emissions, and per GDP 
CO2 emissions (Sha et al., 2020). The PCE is obtained by dividing the 
total urban CO2 emissions by the total population within the urban area, 
which minimizes any bias due to urban size. We use the PCE herein to 
express the intensity of urban CO2 emissions in this work and calculate it 
as follows: 

PCE=TCO2/P, (1)  

where TCO2 is the total CO2 emissions within the urban area, and P is the 
total resident population in the urban area. 

3.2. Urban area and urban functional zone 

The urban extent (UE) from the global hierarchical urban boundaries 
produced by Xu et al. (2021) is used to quantitatively assess the char-
acteristics of urban form. The UE contains some open spaces and water, 
and since these areas contain few points of interest (POI), it is difficult to 
determine the functional attributes of these areas. Therefore, we com-
bined the POI to adjust the scope of UE and obtain the final research 
boundaries. The specific methods are detailed in previous work (Lan 
et al., 2021). 

Urban functional form, expressed in terms of urban functional Fig. 1. Location of sample cities.  
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compactness index (FCI), serves as an important indicator of compact-
ness. FCI takes street blocks as the basic analysis unit and mainly con-
siders the functional zoning and the intensity of human activity to assess 
the rationality of the functional layout of cities. The data used to 
calculate the urban FCI include three items: (1) POI, which were ob-
tained from A map (a Chinese internet map company: https://www. 
amap.com/) in 2019; (2) road networks obtained from Openstreet 
map (a free, open source, editable mapping service: https://www.ope 
nstreetmap.org/) in 2019; and (3) nighttime-lights data. The Earth 
Observation Group produced a V.2 annual time series of global VIIRS 
nighttime lights (Annual VNL V2) based on monthly averages acquired 
with filtering to remove extraneous features such as biomass burning, 
aurora, and background noise (Elvidge et al., 2021). This work uses the 
2019 nighttime lights. Details regarding the data are available in pre-
vious publications (Lan et al., 2021; Sun et al., 2019). 

3.3. Urban form metrics 

Urban form is the spatial configuration of fixed elements in an urban 
area (Anderson et al., 1996) and is portrayed via multiple categories (Liu 
et al., 2021a), such as urban extension, irregularity, fragmentation, and 
compactness. The latter includes two basic aspects: physical compact-
ness and functional compactness (Thinh et al., 2002). Urban physical 
compactness of urban space generally refers to the concentration or 
compactness of urban physical forms such as urban areas, the imper-
vious surface of cities, or the strong correlation between parcels. Urban 
functional compactness refers to the effective mixing of the various 
functional zones in a city so as to maximize the functional benefits of a 
given plot. 

Following previous studies (Makido et al., 2012; Shi et al., 2020; 
Wang et al., 2018a), we selected eight indicators to portray urban form 
in five categories: compactness (physical compactness and functional 
compactness), extension, fragmentation, irregularity, and concentra-
tion. Two indicators are chosen to represent the compactness of cities: 
The first is the physical compactness index (CI), which is based on the 
formula of gravity (Thinh et al., 2002), and the second is the FCI, which 
is further developed starting from the CI (Lan et al., 2021). The larger 

the FCI and CI, the more compact the city. Urban expansion, fragmen-
tation, irregularity, and concentration are represented by various land-
scape metrics (Jia et al., 2019). Urban expansion is characterized by 
total area (TA), where greater TA corresponds to greater urban expan-
sion. Urban fragmentation is expressed by the largest patch index (LPI), 
which correlates negatively with urban fragmentation. Urban irregu-
larity is characterized by the landscape shape index (LSI) and the mean 
perimeter-area ratio (PARA_MN); the larger the LSI and PARA_MN, the 
more complex the city. The patch cohesion index (COHESION) and 
effective mesh size (MESH) represent the concentration of patches; the 
larger the COHESION and MESH, the more concentrated the urban 
patches. Table 1 gives the definitions and formulas for the urban form 
metrics. 

3.4. Regression model 

The ordinary least squares (OLS) regression model is one of the most 
used regression models. It assumes that the regression parameters are 
consistent across regions and does not consider spatial nonstationarity 
due to changes in the relationship between variables or changes in 
structure caused by changes in geographic location. In 1996, Fother-
ingham proposed the geographically weighted regression (GWR) model, 
which considers the information of geographic location based on the 
linear regression model and estimates local regression parameters by 
using the weighted least squares method. The formula for GWR is 

yi = β0(ui, vi)+
∑k

j=1
βk(ui, vi)xik + εi, (2)  

where yi is the total CO2 emissions of city i, β0(ui, vi) is an intercept term, 
βk(ui, vi) is the regression coefficient of the independent variable k in city 
i, (ui, vi) is the longitude and latitude coordinates of city i, xik is the value 
of the independent variable k for city i, and εi is the residual of city i. The 
golden_search method is used to calculate the neighborhood, the 
continuous Gaussian kernel function is used to calculate the spatial 
weight coefficients, and the bisquare is used for the local weighting 
scheme. 

Table 1 
Description of urban form indicators used in the study.  

Category Indicator Equation Description 

Compactness Functional compactness 
Index (FCI) 

FRX =
1

MN
∑

i∈φi

∑

j∈φj

1
c

RiXj

d2(i, j)
FCI =

∑
FRX (X =

2,3,4,5) 

FRX = spatial gravitation between the intensity of human activity of the residential 
zone and that of another zone; φi = set of point i, φj = set of point j; Ri = intensity of 
human activity of point i in the residential zone; Xj = intensity of human activity of 
point j in class X; d = Euclidean distance between point i and point j; M = total 
number of points in the residential zone; N = total number of points in any of the 
other four classes; c = 100 (nW cm− 2 sr− 1)2 m− 2. 

Physical compact Index 
(CI) CI =

∑1
c

ZiZj

d2(i, j)
N(N − 1)/2 

Zi, Zj = urban areas in cells i and j (i∕=j); 
d (i, j) = Euclidean distance (m) between cells i and j; c = 100 (m2); N = total number 
of cells. 

Extension Total areas (TA) TA =
∑n

j=1aij(1 /10000) aij = area (m2) of patch ij. 
Fragmentation The largest patch index 

(LPI) LPI =
Max(aj)

N
× 100 

aj = area (m2) of urban patch j in terms of number of cells; 
N = total number of patches. 

Irregularity Landscape shape index 
(LSI) LSI =

0.25
∑m

k=1e∗ik̅̅̅̅̅̅̅
TA

√
e∗ik = total length (m) of edge in landscape between class i and k; 
TA = total landscape areas (m2). 

Mean perimeter-areas 
ratio (PARA_MN) PARA MN =

∑m
i=1

∑n
j=1

pij

aij

N 

pij = perimeter (m) of patch ij; 
aij = area (m2) of patch ij; 
N = total number of patches. 

Concentration Patch cohesion index 
(COHESION) 

COHSION = 100

⎡

⎢
⎣1 −

∑m
i=1

∑n
j=1p∗ij

∑m
i=1

∑n
j=1p∗ij

̅̅̅̅̅
a∗

ij

√

⎤

⎥
⎥
⎥
⎦
∗

[

1 −
1̅
̅̅
Z

√

]− 1 

p∗ij = perimeter of patch ij in terms of number of cells; 
a∗

ij = area of patch ij in terms of number of cells; 
Z = total number of cells in the landscape. 

Effective mesh size 
(MESH) MESH =

∑n
j=1a2

ij

TA

(
1

10000

) TA = total landscape areas (m2); 
aij = area (m2) of patch ij.  
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The determination of bandwidth is important in the GWR model 
because it determines how many observations are included near each 
city in the matrix. In this work, the optimal bandwidth is determined by 
the corrected Akaike information criterion (AICc) (Wang et al., 2019b). 

4. Results 

4.1. Spatial heterogeneity of urban form in Chinese cities 

The eight urban form indicators were divided into five categories 
based on the nature breaks (Jenks) method. 

Spatial characteristics of urban compactness. For cities in 
different economic zones, significant differences appear in the FCI, with 
the general rule for FCI being that it is higher in the north and lower in 
the south. Significant differences also appear between northeastern and 
eastern cities, western cities, and central cities. The FCIs of northeastern 
cities are significantly greater than those of the other three economic 
zones, and the FCIs of eastern, western, and central cities are similar to 
each other [Figs. 2(a) and 3(a)]. Of the four economic regions, the FCIs 
of cities in the northeast are the highest, with an average of 43.14, fol-
lowed by the northern cities, with an average of 22.91, then by the 
central cities, with an average of 13.98, and finally by the eastern cities, 
with an average of 11.19. The CIs of cities follow the general rule of 
being higher in the north and lower in the south, and higher in the west 
and lower in the east. The CIs of eastern cities differ significantly from 
those of the other three major economic zones. The CIs of eastern cities 
are smaller, and the CIs of western cities, central cities, and northeastern 
cities are all similar to each other [Figs. 2(b) and 3(b)]. 

Spatial characteristics of urban extension. The cities with greater 

urban expansion are mainly provincial capitals and are concentrated in 
the eastern region. The TA of these cities is spatially distributed as fol-
lows: eastern (average TA is 22 774.40) > western (10 740.31) > central 
(8491.06) > northeastern (7324.10). The TA of eastern cities is signif-
icantly greater than that of the cities in the other three economic re-
gions, and the TA of western, central, and northeastern cities are all 
similar to each other (Figs. 2(c) and 3(c)). 

Spatial characteristics of urban fragmentation. The LPIs of 
eastern cities average 69.03 and are significantly smaller than those of 
the cities in the remaining three economic regions, which average 82.89, 
82.45, and 81.82 for the central, northeastern, and western cities, 
respectively. 

Spatial characteristics of urban irregularity. The LSIs of eastern 
cities average 7.89 and are more dispersed and different significantly 
from the LSIs cities in the other three economic regions, which average 
4.22, 4.54, and 5.13 for the northeastern, central, and western cities, 
respectively [cf. Figs. 2(e) and 3(e)]. In addition, PARA_MN for eastern 
cities significantly exceeds that for western cities. Ranking the regions in 
terms of mean PARA_MN gives northeast (800.54) > eastern (798.17) >
central (766.03) > western (634.02) [Figs. 2(f) and 3(f)]. 

Spatial characteristics of urban concentration. The range of 
COHESION is small, and the difference between cities in four regions is 
not significant [Figs. 2(g) and 3(g)]. The MESH of eastern cities and 
some provincial capitals is larger, but no significant difference exists 
between cities in the four regions [Figs. 2(h) and 3(h)]. 

4.2. Spatial heterogeneity of CO2 emissions in Chinese cities 

The TCE in Chinese cities is generally higher in the east and lower in 

Fig. 2. Spatial distribution of the eight form indicators of the study.  
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the west, and the cities with larger TCE are mainly concentrated in the 
Beijing-Tianjin-Hebei urban agglomeration, the Yangtze River Delta 
urban agglomeration, and the Pearl River Delta urban agglomeration. 
Eastern cities have the largest TCE, followed by central cities, western 
cities, and then northeastern cities. Furthermore, cities in the eastern 
region have significantly greater TCE than cities in the other three 
economic regions [Fig. 4(a)]. The PCE is generally higher in the north 
and lower in the south, with more CO2 emissions per capita in the 

northern cities, where coal is the main energy source, and less in the 
south. At the same time, larger cities have higher CO2 emissions per 
capita, and the eastern cities have higher CO2 emissions per capita than 
the cities in the other three economic regions. However, no significant 
difference appears in CO2 emissions per capita between the four eco-
nomic regions [Fig. 4(b)]. 

Fig. 3. Boxplots of the eight form indicators for the different economic zones. Note: *, **, and *** indicate that the results are significant at the 0.05, 0.01, and 0.001 
levels, respectively. 

Fig. 4. Spatial characteristics of total urban CO2 emissions and intensity of urban CO2 emissions. Note: * (**) indicates that the results are significant at the 0.05 
(0.01) level. 

T. Lan et al.                                                                                                                                                                                                                                      
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4.3. Relationship between urban form and CO2 emissions on national 
level 

First, all variables were transformed by the natural logarithm. Next, 
taking TCE and PCE as dependent variables and eight form indicators as 
independent variables, we explore the relationship between urban form 
and CO2 emissions at the national level. For the relationship between 
TCE and urban form, all form indicators passed the significance test, but 
different urban form indicators produced different effects on TCE 
(Fig. 5). The CI accounts for 53.94% of TCE, which is greater than that of 
FCI, and both compactness indicators correlate negatively with TCE. For 
every 1% increase in CI, TCE decreases by 1.36%, and for every 1% 
increase in FCI, TCE decreases by 0.79% [Fig. 5(a) and (b)]. Of all form 
categories, the category “urban extension” explains the most of TCE, 
with R2 = 0.64, and exhibits a strong positive correlation with TCE. For 
every 1% increase in TA, TCE increases by 1.17% [Fig. 5(c)]. The LPI 
significantly reduces TCE, implying that greater fragmentation produces 
more CO2 emissions. However, the degree of fitting is relatively low, 
with R2 = 0.06 [Fig. 5(d)]. Both indicators of urban irregularity, the LSI 
and PARA_MN, significantly increase TCE, implying that more complex 
urban forms increase TCE. However, for PARA_MN, R2 < 0.06 [Fig. 5(e) 
and (f)]. The two indicators of urban concentration, COHESION and 
MESH, both exhibit a significant positive correlation with TCE; that is, 
an increase in urban concentration increases TCE. The range of COHE-
SION is particularly concentrated so that the slope of ln (COHESION) 
and ln (TCE) reaches 257.36, but with R2 = 0.05. The explanatory power 

of MESH for TCE, with R2 = 59%, is second only to that of TA [Fig. 5(g) 
and (h)]. 

The indicators PARA_MN and COHESION provide poor fits to the 
TCE and so are removed. To analyze the relationship between PCE and 
urban form, this leaves six indicators in five categories as independent 
variables and PCE as the dependent variable. Compared with TCE, the 
fitting quality and degree of influence of the six form indicators are 
reduced for PCE, and only five form indicators pass the significance test. 
Of these five, both indicators of compactness have a significant negative 
correlation with PCE, and the CI fits better and has a greater impact on 
PCE: each 1% increase in the CI reduces PCE by 0.51%, and each 1% 
increase in the FCI reduces PCE by 0.34%. Urban expansion, irregular-
ity, and concentration positively affect PCE, with TA, an indicator of 
urban expansion, and MESH, an indicator of urban concentration, best 
explaining PCE, at 21% and 23%, respectively. Each 1% increase in TA 
and MESH increases PCE by about 0.50% and 0.60%, respectively. The 
LPI indicator, which reflects urban fragmentation, does not pass the 
significance test and so does not affect PCE (Fig. 6). 

4.4. Relationship between urban form and CO2 emissions on local level 

The GWR model considers the spatial nonstationarity caused by 
changes in geographical location, assigns weights to each sample, and 
attributes a corresponding regression equation to each sample city. 
Therefore, this study uses the GWR model to analyze the relationship 
between urban form and TCE and PCE on the local level. After excluding 

Fig. 5. Relationship between urban form indicators and TCE. Note: ** (***) indicates that the results are significant at the 0.01 (0.001) level.  
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the poorly fitting form indicators, TCE has six indicators in five cate-
gories, and PCE has five indicators in four categories. Table 2 compares 
the results obtained by the GWR and OLS models. For all GWR models, 
the AICc values are smaller than for the OLS models, with the difference 
between them amounting to over three, and the GWR model has larger 
values of R2. Moran’s I shows that the residuals of all models are 
randomly distributed in space, which means that the GWR model fits 
well. 

Relationship between TCE and urban form. For urban compact-
ness, FCI and CI reduceTCE in all cities, which is consistent with the 
results on the national level. The effect of FCI on TCE tends to be high in 
the middle and gradually decreases toward the south and north. For 
every 1% increase in FCI in the middle region, TCE decreases by 1.70%– 
2.21%. The impact is least near the Beijing-Tianjin-Hebei urban 
agglomeration, where TCE decrease by only 0.42%–0.68% for every 1% 
increase in FCI [Fig. 7(a)]. The effect of the CI on TCE is greater in the 
middle and gradually decreases to the south, north, east; and in the 
middle region: each 1% increase in the CI reduces TCE by 1.88%–2.04% 
[Fig. 7(b)]. 

The effect of TA on TCE also tends to be greater in the middle region 
and decreases to the south, north, and east; and in the middle region: 
each 1% increase in TA increases TCE by 1.40%–1.55% [Fig. 7(c)]. The 

LSI positively affects TCE in all cities, with a relatively larger effect in the 
southern cities [Fig. 7(e)]. In addition, MESH strongly (weakly) affects 
TCE in the south (north) [Fig. 7(f)]. 

Relationship between PCE and urban form. Compactness, exten-
sion, irregularity, and concentration all produce bio-directional impacts 
on PCE. FCI and CI correlate negatively with the PCE of most cities, with 
the largest impact being in the middle region and then decreasing to the 
south and north. In the middle region, every 1% increase in the FCI 
reduces PCE by 0.72%–1.02%, and every 1% increase in the CI decreases 
PCE by 0.91%–1.24% [Fig. 7(g) and (h)]. TA correlates positively with 
PCE in most cities, with the largest correlation being in the middle re-
gion, where a 1% increase in TA increases PCE by 0.74%–0.98% [Fig. 7 
(i)]. The LSI produces the most obvious two-way correlation with PCE, 
with a positive (negative) correlation with most southern (northern) 
cities [Fig. 7(j)]. MESH correlates positively with PCE in most cities: 
every 1% increase in MESH in the middle region (where the correlation 
is largest) increases PCE by 0.76%–0.98% [Fig. 7(k)]. 

4.5. Relationship between urban form and CO2 emissions for different 
industrial structures 

The main source of CO2 emission is the consumption of energy, and 
industry is the main consumer of energy. The 178 sample cities are 
divided into four categories based on their 2019 share of secondary 
industry in the regional GDP, as determined by the natural breaks 
(Jenks) method. The first type of city has the lowest share of secondary 
industry, ranging from 0 to 30.94, and includes 27 cities. We define 
these as “low industrial cities.” The share of secondary industry in 
category-two cities ranges from 30.95 to 40.90 and includes 52 cities 
defined as medium industrial cities. The share of secondary industry in 
category-three cities ranges from 40.91 to 48.90 and includes 62 cities 
defined as high industrial cities. Finally, the share of secondary industry 
in category-four cities is the highest, ranging from 48.91 to 59.11 and 
including 37 cities defined as extra-high industrial cities. These form 
indicators of different categories serve to explore the relationship be-
tween urban forms with different industrial structures and TCE and PCE. 

In terms of urban compactness, both FCI and CI exhibit a significant 

Fig. 6. Relationship between urban form metrics and the intensity of urban CO2 emissions. Note: * (***) indicates that the results are significant at the 0.05 
(0.001) level. 

Table 2 
Performance of Models based on OLS and GWR.  

Dependent variable Independent variable OLS GWR 

R2 AICc R2 AICc 

ln (CO2) ln (FCI) 0.21 630.08 0.52 585.22 
ln (CI) 0.54 533.01 0.72 483.85 
ln (TA) 0.64 490.16 0.76 449.53 
ln (LPI) 0.06 659.77 0.28 635.95 
ln (LSI) 0.25 619.34 0.48 584.06 
ln (MESH) 0.59 511.09 0.70 494.83 

ln (PCE) ln (FCI) 0.07 555.76 0.44 503.10 
ln (CI) 0.14 542.01 0.49 487.53 
ln (TA) 0.21 526.67 0.52 475.77 
ln (LSI) 0.04 561.81 0.41 511.58 
ln (MESH) 0.59 511.09 0.50 479.97  
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negative correlation with TCE under different secondary industry share 
scenarios, and clear spatial differences appear in model fit as well as in 
the degree of effects, with the CI having a greater overall effect on TCE 
than the FCI. Specifically, the FCI exhibits a stronger correlation with 
TCE in cities with a lower share of secondary industries, where a 1% 
increase in the FCI reduces TCE by 1.05% in low-industrial cities. The CI 
exhibits a strong negative correlation with TCE in extra-high industry 
cities, where a 1% increase in the CI reduces TCE by 1.58%. 

Urban extension exhibits a significant positive correlation with TCE 
in all four categories of cities. Urban expansion has the greatest impact 
on extra-high industrial cities, where TCE increases by 1.38% for every 
1% increase in TA. Urban fragmentation correlates negatively with all 
types of cities but is not statistically significant for low and medium 
industrial cities; it explains only 12% of the TCE in high and extra-high 
industrial cities. Urban irregularity exhibits a significant positive cor-
relation with TCE in all four types of cities and is most strongly 

Fig. 7. Spatial distribution of coefficients. (a)–(f) Coefficients of urban form with TCE. (g)–(k) Coefficients of urban form with PCE. The blue ellipses enclose regions 
with strong influence. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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correlated with extra-high industrial cities, where a 1% increase in the 
LSI increases TCE by 1.79%. Urban concentration exhibits a significant 
positive correlation with TCE for all types of cities and is most strongly 
correlated with extra-high industrial cities, where a 1% increase in 
MESH increases TCE by 1.60% [Fig. 8(a)]. 

The fit between urban form and PCE in cities with different industrial 
structures is worse than that between urban form and TCE. In the 
compactness category, the FCI exhibits a significant negative correlation 
with PCE in medium and extra-high industrial cities, where each 1% 
increase in the FCI decreases PCE by 0.33% and 0.48%, respectively. The 
CI exhibits a significant negative correlation with high and extra-high 
industrial cities, where each 1% increase in the CI decreases PCE cities 
by 0.46% and 1.16%, respectively. Urban extension exhibits a signifi-
cant positive correlation with PCE in medium, high, and extra-high in-
dustrial cities. Urban irregularity only exhibits a significant positive 
correlation with PCE in extra-high industrial cities. Urban concentration 
exhibits a significant positive correlation with PCE in all types of cities, 
and the greater the share of secondary industry, the greater the corre-
lation with MESH [Fig. 8(b)]. 

4.6. Effects of urban form on CO2 emissions as a function of topographic 
environment and spatial structure 

In the GWR model, spatial heterogeneity appears in the correlation 
between urban form and TCE and PCE. Therefore, we further explore 
how urban form affects TCE and PCE as a function of topographic 
environment and spatial structure as represented by the degree of relief 
of land surface and polycentricity, respectively. The degree of relief of 
land surface refers to the difference in elevation between the highest 
point and the lowest point in the surface unit. In this paper, we use 
ASTER GDEM V3 to calculate the degree of relief of the land surface of 
cities and classify them into three categories by using the natural breaks 
(Jenks) model. The relief of category A cities (mainly plain cities) is 
0–14.12 m. The relief of category B cities (mainly hilly cities) is 
14.13–28.52 m. The relief of category C cities (mainly mountain cities) 
is 28.53–76.63 m. The urban spatial structure contains both morpho-
logical and functional categories. In this study, the morphological 
category is used to differentiate cities into single-center cities (S) and 
multi-center cities (M). 

Except for the LPI, all form indicators produce an increase in TCE 
with increasing degree of relief of land surface; that is, the change in 
urban form reduces more TCE in cities with a high degree of relief of 
land surface. Specifically, each 1% increase in the FCI reduces TCE by 
0.95%, 1.10%, and 1.30% for cities of categories A, B, and C, respec-
tively. Each 1% increase in the CI reduces TCE by 1.26%, 1.41%, and 
1.89% for cities of categories A, B, and C, respectively. Every 1% 

increase in the LPI reduces TCE by 1.38%, 1.30%, and 10.8% in cities of 
categories A, B, and C, respectively. TA and MESH produce similar ef-
fects on TCE. The LSI has the greatest impact on TCE. For every 1% 
increase in LSI, TCE in cities A, B, and C will increase by 1.60%, 2.03%, 
and 2.37%, respectively. 

All form indicators produce a slightly greater impact on multi-center 
cities than on single-center cities; that is, adjusting the urban form is 
more conducive to reducing carbon emissions in multi-center cities than 
in single-center cities. For every 1% increase in the FCI, TCE in S and M 
cities decrease by 0.98% and 1.09%, respectively. For every 1% increase 
in the CI, TCE in S and M cities decrease by 1.31% and 1.41%, respec-
tively. Each 1% increase in TA increases TCE by 1.11% and 1.19% in S 
and M cities, respectively. For each 1% increase in the LPI, TCE of S and 
M cities decrease by 1.27% and 1.44%, respectively. For each 1% in-
crease in the LSI, TCE of S and M cities increases by 1.68% and 1.97%, 
respectively. Finally, for each 1% increase in MESH, TCE in S and M 
cities increases by 1.18% and 1.28%, respectively (Fig. 9). 

The impact of urban form on PCE is slightly smaller than that of 
urban form on TCE. FCI, CI, TA, LSI and MESH produce an increase in 
PCE with increasing degree of relief of land surface. For every 1% in-
crease in the FCI, PCE in cities A, B, C decreases by 0.40%, 0.44% and 
0.72%, respectively. For every 1% increase in the CI, PCE in cities A, B, C 
decreases by 0.32%, 0.53% and 0.99%, respectively. For every 1% in-
crease in the TA, PCE in cities A, B, C increases by 0.31%, 0.49% and 
0.85%, respectively. Each 1% increase in LSI increases PCE by 0.24%, 
0.63% and 1.05% in cities A, B, C, respectively. Each 1% increase in 
MESH increases PCE by 0.37%, 0.55% and 0.92% in cities A, B, C, 
respectively. 

For every 1% increase in the FCI, PCE in cities S and M decreases by 
0.43%, 0.44%, respectively. For every 1% increase in the CI, PCE in 
cities S and M decreases by 0.39%, 0.50%, respectively. For every 1% 
increase in the TA, PCE in cities S and M increases by 0.36%, 0.46%, 
respectively. Each 1% increase in LSI increases PCE by 0.34%, 0.56% in 
cities S and M, respectively. Finally, each 1% increase in MESH increases 
PCE by 0.42%, 0.53% in cities S and M, respectively (Fig. 10). 

5. Discussion 

5.1. Role of urban functional form in carbon emission reduction 

The FCI correlates negatively with TCE and PCE; that is, the more 
compact the urban functions, the lower the CO2 emissions. This is 
because the more compact urban function means that the intensity of 
human activities between residential zones and the remaining zones is 
greater, and a shorter average distance between residential zones and 
other zones, and less infrastructure such as urban roads, drainage pipes, 

Fig. 8. Relationship between urban form and TCE and PCE in cities with different shares of secondary industry. (a) Relationship between urban form and TCE for 
various shares of secondary industry. (b) Relationship between urban form and PCE for various shares of secondary industry. Note: *, **, and *** indicate that the 
results are significant at the 0.05, 0.01, and 0.001 levels, respectively. Panels (a)–(d) are for low, medium, high, and extra-high industrial cities. 
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water supply pipes, etc., thereby reducing CO2 emissions from infra-
structure as well as traffic, and lowing the CO2 emissions (Schwanen, 
2021; Zhu et al., 2022). 

Optimizing the layout of urban functions and improving urban 
functional compactness have both theoretical and practical significance 
for reducing CO2 emissions. In recent years, urban regeneration has been 
a subject of focus in the field of urban planning and construction in 
China. Urban regeneration has as goal to prevent urban sprawl by sus-
tainably improving the spatial form and function within the existing 
urban boundaries. It is vital to optimize the urban layout within existing 
boundaries and improve urban functional compactness to reduce CO2 
emissions. 

Table 3 lists measures, based on experience, to reduce urban carbon 
emissions by adjusting different form categories. Specifically, measures 
to reduce carbon emissions by leveraging the categories of urban 
extension and concentration are (i) to reduce the urban area and (ii) to 
reduce the fraction of the largest patch area, respectively. The measures 
to reduce carbon emissions by leveraging fragmentation and irregularity 
are (i) to reduce the fragmentation of urban form and (ii) to reduce the 
complexity of cities, respectively. However, within the constraint of 
physical terrain, it is difficult to reduce urban carbon emissions in a short 
period of time by reducing urban areas or simplifying complex 

boundaries. 
From the perspective of compactness, shortening the average dis-

tance between urban plots and increasing the area of internal con-
struction land both reduce carbon emissions by exploiting physical 
compactness, but blindly increasing the construction land within a city 
may reduce the green space within the city where residents can rest and 
relax, thus lowering the quality of life of residents (Vaccari et al., 2013). 
Thus, from the perspective of functional compactness, the measures for 
reducing carbon emissions include adjusting the layout of urban func-
tional areas, shortening the average travel distance of residents, and 
increasing the intensity of human activities. These measures are more in 
line with the goal of sustainable development. Therefore, improving the 
compactness of urban functions to reduce carbon emissions is of vital 
practical significance. 

5.2. Compact development is more conducive to reducing urban carbon 
emissions 

What type of urban form is conducive to the sustainable development 
of cities? Through quantitative analysis we find that a compact urban 
form is more helpful to reduce the carbon emission of cities. The FCI and 
CI, which are two indicators of urban compactness, exhibit a significant 

Fig. 9. Spatial heterogeneity of the influence of urban form on TCE. A indicates cities with degree of relief of land surface of 5.40–14.12 m, B indicates cities with 
degree of relief of land surface of 14.13–28.52 m, C indicates cities with degree of relief of land surface of 28.53–76.63 m, S indicates single-center cities, and M 
indicates multi-center cities. 

Fig. 10. Spatial heterogeneity of the influence of urban form on PCE.  
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negative correlation with TCE on both the national and local levels and 
for different industrial structures; that is, the more compact the city, the 
lower the TCE. The FCI and CI are also negatively correlated with PCE on 
a national level and for different industrial structures and are negatively 
correlated with most cities on the local level. Urban extension, frag-
mentation, and irregularity correlate positively with TCE and PCE of 
most cities, which is consistent with the results of existing research (Ou 
et al., 2013; Shi et al., 2020; Vaccari et al., 2013; Wang et al., 2017). 
Since larger cities in China tend to be economically developed, with 
higher population densities, more infrastructure (e.g., roads), more cars, 
and more energy consumption, which inevitably increases TCE and PCE. 
More urban fragmentation and complexity renders it more difficult to 
reasonably arrange urban functional areas, so roads become more 
complex, which increases CO2 emissions. The increase in urban con-
centration also increases CO2 emissions, which differs from the results of 
existing research (Wang et al., 2018a). A possible reason is that cities 
with large MESH values generally have more developed economies and 
larger populations, so they produce more CO2 emissions. Thus, compact 
development can help reduce urban CO2 emissions. 

In addition, since the physical form of a city is limited by topography 
and landscape, the layout of the functional areas can only be adjusted 
within the given physical form, which allows the physical compactness 
CI to have a greater impact on TCE and PCE. For example, Chongqing 
developed under the natural geographical pattern of “four mountains, 
three valleys, and two rivers.” The physical space for development was 
very limited. Given the limitation of natural geography, the layout of 
urban functions is also limited, resulting in the complexity of urban 
transportation in Chongqing, which is one of the reasons for its high 
TCE. 

5.3. Develop regionally differentiated carbon reduction policies 

In the relationship between urban form and PCE, all categories in-
crease PCE with increasing industrial share. Therefore, the form control 
of extra-high industrial cities should focus on the comprehensive 
adjustment of various categories, strictly control city size, and concen-
trate on urban regeneration within the city. Low industrial cities should 

focus on optimizing urban functional layout and appropriately increase 
city level. 

Adjusting the urban form is more beneficial to reducing carbon 
emissions in cities with a greater degree of relief of land surface. The 
influence of urban form on TCE and PCE increases with increasing de-
gree of relief of land surface. A possible reason for this is that the greater 
is the degree of relief of a city, the greater its physical form is con-
strained, and the more complex are its streets (Yang et al., 2021), 
resulting in greater CO2 emissions. In this case, adjusting the urban form 
is more conducive to reducing carbon emissions. 

In different topographic environments, the LSI has the greatest 
impact on TCE, but the strongest impact on PCE differs. The FCI has the 
greatest impact on class A cities with the lowest degree of relief, and the 
LSI has the greatest impact on class B and C cities. Therefore, in plain 
cities, more attention should focus on improving urban functional form, 
whereas, in hilly and mountainous cities, more attention should focus on 
adjusting the urban form complexity. 

Adjusting the urban form is more conducive to reducing the carbon 
emissions of multi-center cities. The impact of urban form on TCE and 
PCE is slightly greater in multi-center cities than in single-center cities. 
Cirilli and Veneri (2013) reported that fewer urban centers correlate 
with less CO2 emissions generated by commuting, and the PCE in 
single-center cities is lower than that in multi-center cities. With the 
expansion of cities, cities develop from single-center to multi-center, and 
CO2 emissions increase. For multi-center cities, a reasonable urban form 
is conducive to carbon emission reduction. The best form of the city 
comes from considering the urban spatial structure and giving priority to 
the planning and control of the urban form in the big multi-center cities, 
whereas controlling the form of small and medium-sized cities is less 
important, provided they are still in the single-center stage. 

5.4. Uncertainty and prospects 

The CO2 emissions data is the basis for the analysis in this study, and 
CO2 emissions data are likely to introduce uncertainty of the results. 
Recently, The urban emissions in near-real-time Global Gridded Daily 
CO2 emissions Dataset (GRACED) produced by Dou et al. (2022) have 
the merit of high-quality, fine-grained and near-real-time. Here we 
analyzed the relationship between CO2 emissions of GRACED and eight 
form metrics revealed similar findings (Fig. 11), which further supports 
the conclusions of this study. 

The quantitative relationship between CO2 emissions from different 
sources and different categories of urban form needs to be further 
explored in future studies in conjunction with more finely disaggregated 
CO2 emissions data to make more detailed scientific policies. In addi-
tion, the urban form indicators selected herein mainly measure the two- 
dimensional characteristics of urban form, which cannot reflect the 
three-dimensional characteristics of urban space. However, the different 
three-dimensional characteristics of urban form may also lead to dif-
ferences in CO2 emissions. For example, although high-rise buildings 
may conserve land area, they increase CO2 emissions due to the exten-
sive use of building equipment such as elevators, water supply pipes, and 
drainage pipes. The relationship between the urban form in three- 
dimensional space and CO2 emissions is worth further investigation. 

6. Conclusion 

This work investigates the relationship between urban form and CO2 
emissions from multiple categories, especially the urban functional 
form. In addition, the differences in the influence of form categories are 
analyzed in terms of industrial structure, topographic environment, and 
spatial structure to comprehensively explore the association between 
different categories of urban form and urban carbon emissions and to 
provide policy suggestions for urban emission reduction. 

The results indicate that compact urban form, including physical and 
functional, helps to reduce carbon emissions of cities. The adjustment of 

Table 3 
Measures for reducing carbon emissions using different form categories.  

Category Indicator Relationship 
with TCE 

Relationship 
with PCE 

Measure 

Compactness FCI – – Adjusting the 
layout of urban 
functional areas; 
Shortening the 
average travel 
distance of 
residents; 
Increasing the 
intensity of 
human activities 

CI – – Shortening the 
average distance 
between urban 
patches; 
Increasing 
construction land 
within the city 

Extension TA + + Reducing urban 
area 

Fragmentation LPI –  Reducing urban 
fragmentation 

Irregularity LSI + + Reducing urban 
complexity 

Concentration MESH + + Reducing the 
proportion of the 
largest urban 
patches  
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the urban functional form has important theoretical and practical sig-
nificance for urban carbon reduction as it is more feasible to adjust the 
layout of urban functional areas within the existing urban boundaries 
than measures such as reducing urban area. 

In addition, carbon emission reduction policies should be tailored to 
local conditions, consider the topographical environment, spatial 
structure, and industrial structure of cities, and prioritize the planning 
and control of urban forms in hilly and mountainous cities, large multi- 
center cities, and highly industrial cities. In addition to developing 
technology, using clean energy, and improving energy efficiency, 
adjusting urban functional form is an effective way to reduce urban CO2 
emissions while maintaining urban economic development. 

The results of this work have important theoretical and practical 
significance for China to achieve the goal of carbon peaking before 2030 
and carbon neutrality before 2060. The paper makes the following three 
main contributions: First, we empirically quantify the relationship be-
tween urban functional form and carbon emissions; second, we help to 
identify the important factors of CO2 emissions in urban form; and third, 
we provide policy recommendations based on adjusting urban form to 
achieve low-carbon cities. 
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