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E-waste challenges of generative artificial  
intelligence

Peng Wang    1,2,5  , Ling-Yu Zhang1,5, Asaf Tzachor    3,4   & 
Wei-Qiang Chen    1,2 

Generative artificial intelligence (GAI) requires substantial computational 
resources for model training and inference, but the electronic-waste 
(e-waste) implications of GAI and its management strategies remain 
underexplored. Here we introduce a computational power-driven material 
flow analysis framework to quantify and explore ways of managing the 
e-waste generated by GAI, with a particular focus on large language 
models. Our findings indicate that this e-waste stream could increase, 
potentially reaching a total accumulation of 1.2–5.0 million tons during 
2020–2030, under different future GAI development settings. This may 
be intensified in the context of geopolitical restrictions on semiconductor 
imports and the rapid server turnover for operational cost savings. 
Meanwhile, we show that the implementation of circular economy 
strategies along the GAI value chain could reduce e-waste generation 
by 16–86%. This underscores the importance of proactive e-waste 
management in the face of advancing GAI technologies.

Generative artificial intelligence (GAI) represents a pivotal advance-
ment in the field of artificial intelligence (AI) by generating text, images, 
videos or other content types on the basis of input prompts1. Large 
language models (LLMs), a form of GAI that leverages natural language 
processing, are often trained on vast datasets and can be fine-tuned 
to offer expert-level insights in specialized fields2,3. However, LLMs 
demand considerable computational resources for training and infer-
ence, which require extensive computing hardware and infrastructure4. 
This necessity raises critical sustainability issues, including the energy 
consumption and carbon footprint associated with these operations5,6. 
The development of LLMs such as GPT-4 and DeBERTa, along with GAI 
applications in image and video generation such as Sora, highlights 
the growing trend of global hardware expansion, and emphasizes the 
timeliness and importance of sustainable computing.

Previous studies on sustainable computing have primarily 
focused on the energy use and carbon emissions of AI models1,5–7. 
However, the physical materials involved in their life cycle, and the 
waste stream of obsolete electronic equipment—known as electronic 

waste (e-waste)—have received less attention. For example, the weight 
of Nvidia’s latest Blackwell platform (designed for intensive LLM infer-
ence, training and data processing tasks) stands at around 1.36 tons 
(~3,000 pounds), positioning GAI as a substantial material-intensive 
sector. Additionally, predictions indicate that AI’s installed compu-
tational capacity could increase approximately 500-fold from 2020 
to 20308. This rapid growth in hardware installations, driven by swift 
advancements in chip technology, may result in a substantial increase in 
e-waste and the consequent environmental and health impacts during 
its final treatment9,10. In light of this, the International Energy Agency11 
and some leading tech companies have noted the importance of cir-
cular economy strategies, focusing on reducing, reusing, repairing 
and recycling obsolete equipment from data centers (Supplementary 
Table 4). Despite this recognition, there remains a lack of thorough 
quantification method and analysis of these strategies.

In response, we introduce a computational power-driven material 
flow analysis framework (Fig. 1a) designed to quantify the inflow, in-use 
(operating) stock and end-of-service (EoS) volume of GAI servers in data 
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Fig. 1 | Hierarchical framework of our computational power-driven material 
flow analysis model and the corresponding scenario results regarding LLM-
related waste generation without interventions. a, Framework containing 
five layers to link the public GAI service needs with final in-use hardware demand 
through the service layer, model layer, computational power layer, chip system 
layer and data center layer. Meanwhile, different strategies can be applied 
between two linked layers to reduce hardware demand while providing higher 

service, such as GAI model innovations and high-performance chip innovations. 
FPGA, field-programmable gate array; ASIC, application-specific integrated 
circuit. b,c, The e-waste generation per quarter when no further treatment 
is applied (b) and the cumulative amount from different LLM development 
scenarios during 2020–2030 when no further treatment such as refurbishment 
or lifespan extension is considered (c).
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centers that support the computational needs of LLMs. Our quarterly 
assessment spans quarterly from 2020 to 2030 under different future 
GAI scenario settings. The analysis focuses on AI servers that include 
graphics processing units (GPUs), central processing units (CPUs), 
storage, memory units, internet communication modules and power 
systems. Ancillary machinery such as cooling and communication units 
is excluded from this study.

As illustrated in Fig. 1a, we link the demand for computational 
power from LLMs to a widely adopted benchmark server—specifically, 
the most commonly used eight-unit GPU server, the Nvidia DGX H100 
system, introduced in 2023. This server serves as an initial proxy to 
determine the conversion factor of computational power to physical 
infrastructure components. Anticipating future advancements in 
digital electronics, we quantify this benchmark server’s development 
by modeling the computational power per server as exponentially 
increasing according to Moore’s law.

Our study aims not to precisely forecast the quantity of AI serv-
ers and their associated e-waste, but rather to provide initial gross 
estimates that highlight the potential scales of the forthcoming chal-
lenge, and to explore potential circular economy solutions. To this 
end, we develop four future scenarios: (1) limited expansion of GAI 
chip and server manufacturing based on historical trend (~41% dur-
ing 2022–2023), and three scenarios based on varying levels of global 
application of LLMs—(2) an aggressive scenario (widespread applica-
tions with compound annual growth rate—CAGR—of computer power 
demand 136%), (3) a moderate scenario (limited applications with a 
CAGR of 115%) and (4) a conservative scenario (specific applications 
with CAGR of 85%). Additionally, we conducted Monte Carlo simula-
tions to present an uncertainty analysis of our findings.

Figure 1b depicts the global potential increase in the studied 
e-waste generation on a quarterly basis under the four scenarios. Our 
results indicate potential for rapid growth of e-waste from 2.6 thousand 
tons (kt) yr−1 in 2023 to around 0.4–2.5 million tons (Mt) yr−1 in 2030, 
when no waste reduction measures are considered. For context, this 
total annual mass would be equivalent to discarding 2.1–13.3 billion 
units of the iPhone 15 Pro (187 g per unit, Fig. 1b) in 2030, which trans-
lates to 0.2–1.6 units for every person on the planet that year. Specifi-
cally, these values refer to LLM-related waste defined as EoS e-waste 
generation in our model, without further treatments such as refur-
bishing or lifespan extension. As shown in Fig. 1c, the results indicate 
that cumulatively the untreated EoS e-waste stream from designated 
data centers during 2023–2030 could total 5.0 Mt, 3.0 Mt, 1.8 Mt and 
1.2 Mt in the aggressive, moderate, conservative and limited server 
manufacturing capacity growth scenarios, respectively.

For context, the most recent Global E-waste Monitor report indi-
cates that annual e-waste related to small information technology 
equipment such as personal computers totaled 4.6 Mt in 2022, and will 
sum up to 43.2 Mt by 2030, meaning that AI servers could increase this 
quantity by 3% to 12% (Fig. 1c). In our scenarios, the CAGR of LLM-related 
e-waste mass ranges from 129% to 167% during 2023–2030, compared 
with 3.6% for global conventional e-waste mass growth9. Given that AI 
data centers are highly geographically clustered, these untreated waste 
streams would be mainly located in Europe (14%), North America (58%) 
and East Asia (25%) (Fig. 2b). This calls for stringent regulation and care-
ful monitoring of e-waste from data center operations in those regions.

Figure 2 presents the effects of potential circular economy strate-
gies and other related factors on the cumulative out-of-system (OoS) 
e-waste flow. Among these strategies, three levers are developed, each 
targeting different life-cycle stages of servers. The first lever (C1) exam-
ines the effects of immediate upgrades to the latest servers to improve 
the performance of data centers. The second lever (C2) examines lifes-
pan extension via improved maintenance in the use phase. The third 
lever (C3) explores key module reuse in the (re)manufacturing phase. 
To assess the maximum effectiveness of each proposed strategy, we 
use the aggressive LLM proliferation scenario as our baseline. These 

strategies aim to mitigate the environmental impacts of OoS e-waste 
by incorporating circular processes at the upstream EoS waste stage, 
as illustrated in Fig. 2a. Accordingly, we explored two additional levers 
regarding early chip and AI model design stages: increasing computing 
efficiency (C4)12 and introducing an advanced computing algorithm, 
such as sparsity13 (C5).

We find that different circular economy strategies have varied 
impacts on the cumulative OoS e-waste between 2023 and 2030 
(Fig. 2c). The most effective strategy is lifespan extension (C2): around 
3.1 Mt (62%) of obsolete AI servers can be avoided if an extra 1 yr down-
cycling usage is applied. Similarly, the module reuse strategy (C3) 
reduces e-waste by 42% (2.1 Mt). This measure refers to dismantling, 
renovation and reassembly of obsolete critical modules (GPU, CPU, 
battery and so on), so that they can be reused in downcycled comput-
ing. These strategies (C2 and C3) are expected to have positive results, 
while the presumed effect of immediate upgrading (C1) is potentially 
countereffective (with 2.3 Mt more cumulative e-waste), despite reduc-
ing the need for operating servers by 15% when compared with the 
baseline. This scenario indicates the purchase and upgrade of new 
servers in data centers when the latest version is available, rather than 
retirement on a fixed-period schedule.

Our findings reveal that stakeholder involvement in GAI model and 
chip innovation substantially influences e-waste reduction (Fig. 2b). 
Innovations in GAI models can decrease the demand for computational 
power to deliver the same GAI service (Fig. 2a). For example, introduc-
ing 2× sparsity in strategy C4 can cut expected e-waste generation by 
50% (2.5 Mt). Similarly, improvements in chip computing efficiency 
(C5) lead to a 16% reduction in e-waste (0.8 Mt). It is important to note 
that these strategies focusing on chip and model optimization could 
also trigger a rebound effect—increased service demand leading to 
higher server-related e-waste. Implementing strategies C2 through 
C5 could reduce e-waste by 86% when compared with the baseline 
scenario. Therefore, coordinated efforts across the entire GAI value 
chain—including model development, chip manufacturing, data center 
operations and waste management—are crucial.

Considering the uneven development of data centers in the global 
GAI industry and existing semiconductor export bans, we further 
investigate how potential technical barriers can impact the scale of OoS 
e-waste flows. Currently, major chip suppliers such as the United States 
have restricted the sale of advanced GPUs to certain countries, includ-
ing China14. As a result, data centers there are forced to use outdated 
server models. We have developed several geopolitical scenarios to 
assess the impact of these restrictions: (T1) countries subject to bans 
without taking any countermeasures, (T2) countries subject to bans 
that achieve technological breakthroughs within 10 yr (ref. 14) and (T3) 
banned countries implementing circular economy strategies C2–C5.

Our results indicate that technical barriers can impact e-waste 
management, although the severity depends on circularity practices 
adopted by countries subject to bans. In the absence of trade restric-
tions, data centers worldwide can freely purchase the latest model. 
However, geopolitical factors leading to the concentrated supply of AI 
server components, such as GPU chips, can result in the loss of compu-
tational efficiency in countries that do not have access to such chips, 
resulting in higher physical server demand. For instance, the Nvidia 
H800’s bandwidth efficiency is half that of the H100, necessitating 
double the number to achieve equivalent performance. Our analysis 
indicates that a 1 yr delay in obtaining the latest chips could result in 
a 14% increase in EoS e-waste, cumulatively totaling 5.7 Mt from 2023 
to 2030, higher than the global quantity of small ICT waste in 20229. In 
a more optimistic case, where the regional semiconductor industry 
rapidly advances (strategy T2), our results indicate a 12% increase in 
e-waste when compared with the baseline. Nonetheless, implementing 
circularity measures can mitigate the additional e-waste generated by 
these technical barriers (T3), underscoring the importance of server 
utilization optimization explored in levers C2 and C3.
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We further quantify the valuable and hazardous material associ-
ated with obsolete LLM-related servers, mainly in three component 
categories: printed circuit boards with mounted semiconductor units, 
batteries and structural parts. They contain toxic metals including 
lead and chromium, and valuable metals such as gold, silver, platinum, 
nickel and palladium. A detailed estimation of these materials is pre-
sented in Supplementary Fig. 5. At the upper bound, we find that the 
aggressive scenario (with 1.5 Mt of printed circuit boards—mainly epoxy 
and polyamide—and 0.5 Mt of lead batteries—mainly lead, acrylonitrile 
butadiene styrene and polycarbonate) could generate substantial 
amounts of toxic substances (Supplementary Section 1.3). Conversely, 
it could create great economic gains if recycled properly, with an esti-
mated value of around US$14–28 billion (2020–2030 cumulative value 
calculated at 2023 fixed prices). Given these facts, the potential toxic 
emissions and the recycling technologies call for further study15.

In the realm of data centers, several prominent operators, such as 
the Microsoft Azure data center, have committed to sustainable prac-
tices and outlined zero-waste-series strategies (Supplementary Sec-
tion 4.2). Nonetheless, similar to the current pattern of e-waste trade 
flows, GAI-related e-waste from environmentally aware nations may be 
exported to low- and middle-income countries, harming the environ-
ment and health. Thus, it is vital to boost circular economy strategies, 
track cross-border e-waste and encourage data center sustainability 
self-reporting. Sustainability certification or the digital life-cycle pass-
port from battery waste management can serve as a ref.16.

Ultimately, our findings highlight the pressing need to anticipate 
future surges in GAI-related e-waste and to proactively adopt circular 
design and management strategies to mitigate its impact. Despite 
incorporating uncertainty analysis, our study has limitations. These 
include assuming constant computational power intensity for GPU 
servers, rough estimations of parameter configurations, and overlook-
ing regional and inter-data-center variations. These factors could lead 
to both underestimation (for example, the usage scenarios and scope 
of GAI are underestimated) and overestimation (especially when chips 
use more advanced manufacturing processes in the future, increasing 
computational power intensity per unit mass of material) of the e-waste 
impact. Future research will need to address these limitations and refine 
assumptions to explore and develop more effective circular strategies. 
Nonetheless, our findings underscore the need to acknowledge the 
potential for future swells of GAI-related e-waste and to proactively 
implement circular, design and management strategies to avoid them.

Methods
We develop a dynamic model to estimate future amounts of global 
GAI-related e-waste under different scenarios. The logistic diagram 
is shown in Supplementary Fig. 1. We consider only the training and 
inference servers used for LLM computing inside data centers, ignoring 
servers for other purposes and accessory modules (Fig. 1a). The estima-
tion of LLM proliferation is the basis of the model, and is determined 
by the number of models, number of parameters (in both training and 
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inferring), training time, daily active users and queries per user per 
day. Unlike the simple exponential estimation, we use the limitation of 
training data size (that is, the sentences for training the model are finite) 
as the constraint to set limits for its development. Then, the compu-
tational power demand, which is derived from LLM proliferation, can 
be transformed into server demand by considering the computation 
efficiency and computational power per chip, which evolves according 
to Moore’s law. To estimate the number of servers being discarded, 
we first assume the global new server deployment and stock amount. 
Then, the e-waste amount can be quantified on the hypothesis that the 
servers have a fixed lifespan and are discarded at the end of this period. 
In the baseline scenario, a 3 yr lifespan is selected on the basis of the 
historical general lifespan of computing devices, which is between 2 
and 5 yr (Supplementary Section 3.3). We quantify the e-waste amount 
generated in 2030 and the cumulative amount between 2020 and 2030 
at quarterly intervals. A brief description of the model components is 
given here with a detailed explanation of each parameter provided in 
Supplementary Section 1.

Estimation model of LLM-related GPU server flows
It is hard to gauge the accurate number of servers in data centers, as 
this is regarded as proprietary information by operators. Here we use 
the dynamic demands of computational power and the performance 
of GPU servers to approximate the number of servers, by evaluating 
the evolution of LLM parameter scales, training dataset scale, number 
of LLMs worldwide, number of daily active users and computational 
power of GPU servers. The configuration of these factors is derived 
from complementary research and recognized theorems such as 
Moore’s law. ‘Dynamic’ means that the estimation is not carried out 
by simply dividing the total computational power demands by the 
individual computational power per GPU server. The stock compu-
tational power should be considered using this principle: number of 
new servers = (new computational power demands − current com-
putational power stockage)/computational power per new server. 
The computational power is measured in pfs-day (24 h computing 
at 1 petaflop s−1). This unit is widely used to describe the scale of AI 
computing tasks by OpenAI, Google and so on. For full details, see 
Supplementary Section 1.1.

Regional distribution analysis of LLM development
AI data centers are currently geographically clustered. Here, we sup-
pose that the training and inference of LLMs will be undertaken in 
the same region as model development as a simplifying assumption. 
In this regard, three major LLM regions are selected: North America 
(United States and Canada), East Asia (China, South Korea and Japan) 
and Europe (European Union and United Kingdom). The regional dis-
tribution proportion is calculated by counting the number of exist-
ing LLMs in the three regions. Details of accounting are available in  
Supplementary Section 2.

Scenario development and settings
In this study, we develop four LLM development scenarios to explore 
possible LLM-related e-waste generation trends, namely a limited 
expansion of GAI chip capacity scenario, an aggressive scenario, a 
moderate scenario and a conservative scenario. The limited expan-
sion of GAI chip capacity scenario is based on the hypothesis that 
the development of GAI scope is constrained by the manufacturing 
capacity of chip and server companies. The aggressive scenario fol-
lows the radical adoption of LLMs for daily usage such as some search 
engines and social platforms (for example, Google, Bing, Baidu and 
Facebook). Then, moderate and conservative scenarios are modeled 
with the assumption that LLMs have a specific yet wide-range target 
user (for example, TikTok), and that LLMs serve only those who become 
accustomed to this interaction (for example, voice assistants on smart-
phones). The detailed settings of different key parameters for these 

scenarios are given in Supplementary Sections 3.1 and 3.2 and listed 
in Supplementary Data 1. We further made comparisons with existing 
projections to indicate how our assumptions align with those of other 
authors. We then explored six scenarios to examine the extent to which 
the circular economy strategies (Supplementary Sections 3.3 and 
3.4) and technical barriers (Supplementary Section 3.5) might affect 
the estimated e-waste generation amounts. The hypotheses of these 
scenarios are listed below, and detailed value configurations, potential 
impacts and practical applications of each strategy are discussed in 
Supplementary Section 3.

	(1)	 C1: immediate upgrade. This is realized by changing the training 
computational power and inference computational power with 
the hypothesis that data center operators decide to substitute 
all the servers as soon as there are major upgrades of on-sale 
GPU (to reduce energy or maintenance costs, for example).

	(2)	 C2: lifespan extension. This refers to deployment of servers 
at the end of their L yr lifespan (generally 3 yr) to downcycled 
server applications, such as less intensive AI computation or 
non-AI computation (for an extra 1 yr).

	(3)	 C3: module reuse. This refers to the dismantling, renovation 
and remanufacturing of key modules of an obsolete GPU server, 
for example, GPU modules, CPU modules, memory modules 
or communication modules. The ultimate goal of this strategy 
is similar to that of the lifespan extension strategy: to extend 
the usage phase of a certain computational power. However, it 
differs from lifespan extension in two aspects. First, remanufac-
turing requires extra material; therefore extra e-waste is bound 
to reused servers, which does not occur in the lifespan exten-
sion case. Second, the renovated and remanufactured servers 
are re-endowed with a full L yr lifespan, rather than merely a 1 yr 
addition life in the lifespan extension case.

	(4)	 C4: introduce advanced computing algorithm to models. We 
introduce sparsity features in this scenario. To conduct the cal-
culation, we halve the value of computational power demand.

	(5)	 C5: increase chip’s computing efficiency. Only the computa-
tional power efficiency is changed in this scenario.

	(6)	 T1–T3: three scenarios for technical barriers. A technical 
barrier refers to export regulations of certain GPU servers to 
certain countries or regions. Under these circumstances, the 
countries subject to the barrier will have to use servers with 
weaker computational power to conduct LLM computing 
tasks. For instance, the Nvidia H800 is a specifically adapted 
version of the H100 for the Chinese market due to the technical 
barrier implemented in August 2022. The difference between 
them is the drop in interconnect bandwidth, which leads to 
longer computing time. This is equivalent to a lag in computa-
tional power of pfs-day. In the three technical barrier scenarios 
(T1, T2 and T3), we reconfigure the training and inference 
computational power for the countries subject to the barrier 
and redo the calculation.

Data availability
This paper analyzes existing and publicly available data. All data 
sources used in this research are referenced in the main text or in  
Supplementary Information17. Source data for Figs. 1b,c and 2b,c are 
available with this paper.

Code availability
The main code of our approach (as well as datasets to run the code) 
is available17.
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